• Title/Summary/Keyword: fertilizers

Search Result 1,008, Processing Time 0.024 seconds

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

Effects of Tillage and Fertilizers on Growth Characteristics and Yield of Soybean (무경운 콩 재배를 위한 유기질 비료와 화학비료의 적정 시비법)

  • Jung, Hyun-Jin;Park, Hyung-Jun;Kwon, Soo-Jeong;Yoo, Jin;Kim, Suk-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.264-269
    • /
    • 2016
  • The present study was conducted to establish the optimal fertilization type and method for no-tillage during the first year of No-tillage (NT) and Conventional-tillage (CT) practices for soybean, using different types of fertilizers. In this experiment, the culm length and stalk diameter showed a greater response to fertilization with surface irrigation than to conventional fertilization. The fastest flowering period (July 28) occurred using chemical fertilization applied via subsurface irrigation. Comparing maturation based on growth characteristics and flowering date revealed that fertilization with subsurface irrigation was more effective for the growth of crops than other methods. Regarding yield, there was no significant difference between livestock and chemical fertilizers in subsurface irrigation, but there were significant differences between these fertilizers when using conventional fertilization methods. Based on the results, livestock fertilizer with subsurface irrigation effectively enhanced crop quantity. Nitrogen absorption of plants using subsurface irrigation was more effective than that using conventional fertilization. Regarding phosphorus absorption of plants, chemical fertilizers showed higher absorption than did livestock fertilizers for both subsurface irrigation and conventional fertilization. Unlike nitrogen, phosphorus was highly absorbed using conventional fertilization. Absorption of phosphorus and potassium were similar but phosphorus was not absorbed using livestock fertilizers applied either using subsurface irrigation or with conventional fertilization.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

Effect of Using Organic Fertilizer on the Growth of Rice and Soil (유기질비료의 사용에 따른 토양 및 벼의 생육에 미치는 영향)

  • Oh, Tae-Seok;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • In an experiment of organic manure to substitute for chemical fertilizers in rice-cropping, the amount of applied fertilizer tended to increase pH and organic matters, depending on chemical characteristics of soil with organic fertilizers. At first, that tendency about growth characteristics was shown in treatment group, which was applied organic manure and chemical fertilizers, comparing with control group. However, after growing period, leaf area, fresh weight, and dry weight in seventh treatment group applied 12 kg / 10 a of organic manure was higher than in other groups. There was no significant difference of the number of glumous flowers or percent ripened grain in terms of yield component, and control group and treatment group yielded above 500 kg per 10a. Especially, the highest figure was from seventh treatment group, 538 kg / 10 a. Furthermore, quality of rice grain showed not much difference, depending on whether or not applying organic fertilizers. As a result of the experiment, applying organic manure improves the physical property of soil. It is clear that organic fertilizers can be substituted for chemical ones since there is no difference from yield component and quality of brown rice, comparing with chemical fertilizers which have been used conventionally. The proper amount of organic manure is 267 kg per 10a; it makes good quality of yield.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Effect of various kind and amount of nitrogen fertilizers on the Plant growth , physiological , yield and extracts .ligustilide, butylidene phthalie contents of crude drug 'Tou-Ki' (Angelica acutiloba Kitagawa) (질소종류 ならび 질소시비량の 상위が 생육 , 생리 , 수량병びに 각 엑끼스 ( エキス ) , Ligustilide , Butylidene phthalide 함량に급ぼす영향)

  • 홍리앙
    • Korean Journal of Plant Resources
    • /
    • v.5 no.1
    • /
    • pp.57-68
    • /
    • 1992
  • The effects of various kind and amount of nitrogen fertilizers on the plant grorth. physiological , yield and extracts. ligustilide, butylidene phthalide contents of curdsdrug "Tou-ki" (AnTelica acutiloba Kitagawa) were investigated in 1989. Five plots variouskind of nitrogen fertilizers. Namely, no nitrogen, urea. ammonium nitrate, ammoniumchloride and control plot of ammonium sulfate. The other, by providing five plotsdifferent composed ratio of nitrogenous fertilizers. containing no nitrogen (No. o) .0.5-fold nitrogen (No s), control plot of 1.0-fold nitrogen(Nl.o). 1.5-fold nitrogen(Nl s)and 2.0-fold nitrogen Na. o), but nitogen was used the ammonium sulfate. The results showedthat the crude drug "Tou-ki" can ammonium chloride be produced in good yield, displayingboth good plant growth and remarkable physiologically-active conditions, and it can beproduced such that the extracts is maximized. Additionally, using methods of gaschromatography (GC) , it was established that ligustilide and butylidene phthalide, majorcomponents in the crude drug was recovered in a good yield from the fully grown plants.The other, the plant growth, the physiologically-active, the weight of whole plant, theyield of extracts and ligustilide, butylidene phthalide were seen to be best at the plotof 2.0-fold nitrogen and according to the increase or decrease of nitrogen decreasedgradually. Therefore. about 2 fold of standard quantity seems to be the most suitablequantity of nitrogen for "Tou-ki" cultivation .uot;Tou-ki" cultivation .ion .

  • PDF

Contribution of Rice Mill Ash and Press Mud with Inorganic Fertilizers to Sugarcane Production in Old Himalayan Piedmont Plain Soils of Bangladesh

  • Paul G. C.;Rahman M.;Khan N. U.;Rahman A. B. M. M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.108-111
    • /
    • 2005
  • A field study was conducted to develop an economically suitable combination of organic and inorganic fertilizers for sugarcane cultivation in sandy acidic soil of a commercial sugarcane farm under Old Himalayan Piedmont Plain of Bangladesh. Results revealed that the treatment $T_4$ which received $75\%$ of Recommended fertilizers (N 120, P 35, K 100, S 25, Zn 2 kg $ha^{-1}$) + 10 Mg $ha^{-1}$ Rice mill ash + Mg $ha^{-1}$ press mud significantly produced higher sugarcane yield (72.34 Mg $ha^{-1}$) among all the treatments except $T_5$ having $100\%$ of Recommended fertilizers + 10 Mg $ha^{-1}$ Rice mill ash + 10 Mg $ha^{-1}$ press mud, which was identical. $T_4$ also gave the highest net economic benefit at Bangladesh Taka 15,920.47 per hectare from the added nutrient management. Thus, the integrated use with organic and inorganic fertilizer is highly essential for sustainable production of sugarcane in commercial farm of the region in Bangladesh, where it has been grown year after year.

Effect of Compound Fertilizer on Hot Pepper (고추에 대(對)한 복합비료(複合肥料)의 비효 비교시험(比較試驗))

  • Oh, Wang-Kun;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.215-218
    • /
    • 1982
  • The fertilizer efficiency of the compound fertilizers with different NPK Compositions were compared with that of simple fertilizers in the view of the yield differences of Jungweon Cheongyong Capsicum grossum of Hot pepper. The results were summarized as follows: 1. The yields of ripened red peppers of the compound fertilizer plot were higher than that of the simple fertilizer plot showing no statistical differences between the fertilizers. 2. No differences in the nutrient composition of the plant leaves were found between the treatments, thus the yield was not correlated with the nutrient composition. 3. In the soil where the compound fertilizers were used, the available phosphate content after the harvest increased but other nutrient contents were unchanged.

  • PDF

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

The effect of nitrogen-fixing microorganisms on plant promotion in cabbage

  • Moon, Je-Hun;Jadamba, Chuluuntsetseg;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.190-190
    • /
    • 2017
  • Chemical fertilizers have been used to increase crop production and contributed to escaping food shortages. However, excessive use of chemical fertilizers over a long period caused many problems such as environmental pollution and the hampered production potential of the land. Thus, it is necessary to develop eco-friendly bio-fertilizers that can replace the use of chemical fertilizers. Here, we tested the effect of some nitrogen-fixing microorganims on the plant growth promotion. Seventy free-living nitrogen fixing microorganisms were isolated from rhizosphere of crop cultivation fields, streamside soils and sludge in Ansung, Korea. Of them, three strains (NF2-4-1, Yeast; EMM409, Mesorhizobium; Gsoil662, Burkholderia) were selected to be most efficient in the capacity of N-fixing nitrogen based on colony forming cell assay in N-free media. To investigate the ability to promote plant growth, these strains were inoculated into the soil and cabbage were grown for 4 weeks in the grown chamber. Fresh weight, dry weight, and leaf area were measured from 4-week-old plants. Phenotypic analysis revealed that the growth of the plants inoculated with NF2-4-1 and EMM409 strains were significantly promoted compared to the mock-treated control plants, while Gsoil662-inoculated plants did not show statically significant promotion. These results indicate that these nitrogen-fixing microorganims can be used to develop plant growth promoting bio-fertilizers. Further analysis on nitrogen fixing level in soil by these strains will be tested.

  • PDF