• Title/Summary/Keyword: fertigation system

Search Result 35, Processing Time 0.022 seconds

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.919-926
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

Effect of Reduced Nitrogen Fertigation Rates on Growth and Yield of Tomato (질소 관비량 절감이 토마토 생육 및 수량에 미치는 효과)

  • Lee, In-Bog;Lim, Jae-Hyun;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.306-312
    • /
    • 2007
  • To investigate the effect of N fertigation on the growth, yield, and water and nitrogen use efficiencies during tomato cultivation, seedlings were transplanted in a sandy loam soil under plastic film house condition. 0, 88, 132, 176, $220\;kg\;ha^{-1}$ N rates, which correspond to 0 (NF0), 40 (NF40), 60 (NF60), 80 (NF80), 100% (NF100) N level of soil test-based N fertilization, were injected weekly through drip irrigation system for 15 weeks in N fertigation system, and the control (conventional N treatment) was installed for comparison. Herein, nitrogen was applied by top-dressing with 60% as a basal and 40% as additional fertilizer. There was little different in stem diameter growth among N fertigation treatments, but plant height and dry matter increased with increasing N fertigation rates as well as in N conventional treatment. Tomato yield was increased with increasing the number of marketable fruits in N fertigation treatments, and the fruit yield was maximized in NF 80 treatment ($176\;kg\;ha^{-1}$ N supply or $96.6\;mg\;L^{-1}$ N injection). Dry matter productivity and nitrogen uptake amount were significantly increased with increasing N fertigation rates. The ratio of fruits to the dry weight of whole plant was decreased with increasing N fertigation rates, but this ratio was $2.6{\sim}5.3%$ higher in N fertigation treatments than in the control. In addition, the ratios of nitrogen distributed toward fruits in N fertigation treatments were $3.7{\sim}21.7%$ higher than that of control. The apparent N recovery percentages showed significantly higher values as $71.8{\sim}102.3%$ in N fertigation treatments, compared to 45% in N conventional treatment. Water use efficiency was significantly increased by fertigation system with the maximum $361\;kg/ha\;cm^{-1}$ in NF 80, which is comparable to $324\;kg/ha\;cm^{-1}$ of the conventional treatment. Conclusively, N fertigation system was effective on increasing tomato productivity and nutrient efficiency as well as 20% reduction of N fertilization level.

Establishment of the Optimum Nitrogen Application Rates for Oriental Melon at Various Growth Stages with a Fertigation System in a Plastic Film House (시설 참외 관비재배시 생육단계별 질소시비기준 설정)

  • Jung, Kyu-Seok;Jung, Kang-Ho;Park, Woo-Kyun;Song, Yo-Sung;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.349-355
    • /
    • 2010
  • This experiment was conducted to establish the optimum nitrogen application level for oriental melon at Seong-ju Fruit Vegetable Experiment Station with a fertigation system. Four different levels of nitrogen fertigation were applied to oriental melon and growth of the plant was analyzed. Plant samples were collected 8 times and were analyzed by the standard methods. The first fertigation was applied at 10 days after transplanting for the oriental melon based on the growth rates of the plants. For oriental melon, 10 day interval fertigation and 8 time split application of fertilizer could be recommended. The amounts of N, P, and K fertilizer recommended by soil testing was 249-408-315 (kg $ha^{-1}$). Treatment levels were 0, 0.5, 1.0, and 1.5 times of soil testing nitrogen with P and K level fixed. The total nitrogen (T-N) content in dried leaf showed a tendency to increase until 30 days after transplanting, then decreased. T-N content increased with increasing nitrogen fertigation rates. T-N content in dried fruit decreased slightly during the whole growing season. Fresh weight and nitrogen uptake were increased with increasing nitrogen fertigation rates. Total yield and marketable yield, 44,550 kg $ha^{-1}$ and 42,880 kg $ha^{-1}$, were maximized at 0.5 times of soil test nitrogen. Ratio of marketable fruit, 95%, was the highest at 0.5 times of soil test nitrogen. The optimum level of nitrogen for fertigation system was 0.5 times soil test nitrogen judging from total yield, commodity yield and commodity fruit.

Effects of nitrogen fertigation on cucumber growth and nitrate in Soil under plastic film house (시설재배지에 질소관비 농도가 오이생육과 질산태 질소에 미치는 영향)

  • Kang, Seong Soo;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • To evaluate the impact of nitrogen fertigation on crop growth and $NO_3$-N concentration in the soil solution, field experiment for cucumber cultivation during spring and fall season were carried out in on-farm located in Byeongcheon-myeon, Chunan-si, Chungcheonnam-do. Supplying nitrogen of 120-150 mg/L by fertigation device into soil per week reached to maximum yields of cucumber fruits. However, cucumber growth did not show any significant difference between nitrogen levels. Nitrogen supply of 400 mg/L, highest N levels, did not affect cucumber growth. Difference between green values of cucumber leaves using RGB scores were closely related with cucumber yields, and therefore, this results suggests that green values of cucumber leaves could be used as a way of determining the application rates of nitrogen for cucumber cultivation period under fertigation system.

Effect of Sub-soil Drip Irrigation and Fertigation on Mulberry Yield (뽕밭 지하점적관수 및 관비에 의한 생산성 향상에 관한 연구)

  • 이원주;최영철;송성범;성문현
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.6-12
    • /
    • 1992
  • To study the effects of irrigation on the mulberry, 3 experiments were conducted. In experiment 1, four treatments, conventional (no irregation), drip irrigation, fertigation and fertigation with 20% extra fertilizer were examined. Irrigation hose was hurried at 20cm depth under the surface (Experiment 1). Water potential was controled at 0.1, 0.2, 0.5 and 1.0 bar to understand the optimum irrigation potential under rain-block system with plastic film hose(experiment 2). Five leading mulberry varieties, Cheongilppong, Youngcheonppong, Suseongppong, Kaeryangppong and Shinilppong were examined for irrigation response(experiment 3). Fertigation and fertigation with extra fefilizer increased yield by 22%, repectively compared with conventional. Irrigation increased by 8%, but with no significance statistically compared with the conventional. Irrigation, especially fertigation increased water content, P$_2$O$_{5}$, $K_2$O and CaO in leaves, suggested improving leaf quality in fall. Fertigation increased available P$_2$O$_{5}$ content in the sub-soil. More root distribution showed at the sub-soil in fertigation. Weed did not occured in fertigation due to sub-soil fertilization, whereas the conventional received surface fertilization showed 931kg/10 a weed in fresh weight. No effect showed at the 20% extra fertilizer than the conventional amount Maximun yield showed at the 0.5 bar water potential. Irrigation increased yield by 22-25% with Cheongilppong and Yongcheonppong, and by 9-13% with Suseongppong, Shinilppong and Kaeryangppong.

  • PDF

Application of Subsurface Drip Fertigation System to Increase Growth and Yield of Maize (옥수수의 생육 및 수량 증대를 위한 지중점적 관비 시스템의 적용)

  • Jong Hyuk Kim;Yeon Ju Lee;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • This study was conducted to investigate how maize (Zea maize L.) growth and yield were affected by irrigation and fertigation using a subsurface drip system. The system consisted of a buried (40 cm underground) drip pipe that can be used in a semi-permanent manner without affecting agricultural work on the ground. The amount of water required for the fertigation treatment was determined to be 24.3 tons 10a-1 for the sandy loam soil used in this experimental field. Fertigation treatments based on the previously calculated 24.3 tons 10a-1 were carried out as topdressing applications. They were applied through the subsurface drip system with the following fertilizer concentration (nitrogen only, written in kg 10a-1: N 4, N 6, N 8, N 10 ). The other treatments were irrigation only and control (non-treatment). The results indicated that the N 8 treatment was the most effective, increasing yield by 30% and 14% compared with the control and irrigation treatments, respectively. These results highlight the effectiveness of fertigation (N 8 kg 10a-1) at V6 and R1 stage as a form of topdressing fertilization using a subsurface drip system for achieving a high yield and stable maize production.

Effects of Fertigation of Piggery Waste Water on the Growth, the Yield of Red Pepper and the Chemical Properties of Soil under Protected Cultivation (시설재배토양에서 돈분뇨정화처리수 관비가 고추의 생육, 수량 및 토양화학성에 미치는 영향)

  • Kim, Ki-Deog;Lee, Byoung-Yil;Park, Chang-Kyu;Won, Sun-Nee;Yoo, Chang-Jae
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 1999
  • This study was conducted to investigate the effects of fertigation level such as 50%, 75% and 100% N of standard amount of chemical fertilizer,m and fertigation interval such as every irrigation, intervals of 1 and 2 weeks of piggery waste water(PWW) on the growth, yield of red pepper plant and the chemical properties of soil used. In early stage, growth of red pepper plant fertigated with PWW and that of red pepper plant applicated standard chemical fertilezer was the same, while it were increased as increasing application amounts of PWW, and later growth and total yield of red pepper plant were much more at 75% N fertigation of PWW. Inorganic content such as nitrogen, phosphate and potassium and chlorophyll content of red pepper leaves were increased as increasing fergigation amount of PWW. 50% fertigation level showed the lowest rate of fruit setting of red peper plant. For soil chemical properties, pH was slightly decreased, but available $P_2O_5$, and exchangeable K content were increased as increasing fertigation amount of PWW. Because there was not statistically significant difference in the growth, the yield of red pepper and chemical properties of soil used according to various fertigation intervals, and no need to artificially supply PWW, therefore fertigation by simple automatic system with tensiometer was thought to be better.

  • PDF

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Effect of Nitrogen Fertigation on The Growth and Nutrition Uptake of 'Brightwell' Rabbiteye Blueberry (질소관비 수준이 래빗아이 블루베리 '브라이트웰'의 생장과 양분흡수에 미치는 영향)

  • Kwack, Yong-Bum;Chae, Won-Byoung;Lee, Mock-hee;Jeong, Hae-Won;Rhee, Han-Cheol;Kim, Jin-Gook;Kim, Hong-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.161-168
    • /
    • 2017
  • BACKGROUND: Rabbiteye blueberry(Vaccinium ashei Reade) has low nutrient uptake efficiency due to its shallow and fibrous root system without root hairs. This study was carried out to establish an efficient nutrient application standard by investigating the effect of nitrogen fertigation on the growth and fruit characteristics of rabbiteye blueberry. METHODS AND RESULTS: 'Brightwell' rabbiteye blueberry was treated with 0, 50, 100 and 200% nitrogen fertigation of recommended fertilizer application (6, 9 and 14 g/bush in the first, second and third years, respectively). The results showed that leaf nitrogen content significantly correlated with the fruit weight and fruit yield. However, canopy area, dry weight, sugar and anthocyanin contents did not correlate significantly with the leaf nitrogen content. The leaf and stem dry weights of 'Brightwell' rabbiteye blueberry during the third year of planting were the highest with 50% nitrogen fertigation (leaf dry weight=723.7 g/bush; stem dry weight=890.7 g/bush). Maximum fruit yield of 'Brightwell' rabbiteye blueberry (12.9 kg/bush) was observed during the third year of planting with 50% nitrogen fertigation and this was about 70% greater than the treatment that received no nitrogen fertigation. The fruit yields of 'Brightwell' rabbiteye blueberry during the third year of planting treated with 100 and 200% nitrogen fertigation were 11.0 and 11.5 kg/bush, and these were 17 and 12%lower than the 50% nitrogen fertigation treatment, respectively. Further, the efficiency of nitrogen utilization was the highest (90%) with 50% nitrogen fertigation and lowest (18%) with 200% nitrogen fertigation. CONCLUSION: The results of this study suggests that fertigation with 50% of the recommended fertilizer could be most effective for enhancing the growth and nitrogen use efficiency of rabbiteye blueberry.