• Title/Summary/Keyword: ferrous ions

Search Result 69, Processing Time 0.022 seconds

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

Effect of the Chemical Reduction by Ferrous ions on Chromate Toxicity to Daphnia magna

  • Park, Kyeong S.;Man B. Gu;Kim, Sang D.
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.122-122
    • /
    • 2001
  • The reaction kinetics of hexavalent chromium with ferrous ions were studied to determine the influence of reduction on the toxicity of chromium to aquatic organisms. The changes in chemical forms of the chromate in the presence of ferrous ions were examined in a bioassay system using Dphnia magna as a test organism. (omitted)

  • PDF

Experimental Simulation of Iron Oxide Formation on Low Alloy Steel Evaporator Tubes for Power Plant in the Presence of Iron Ions

  • Choi, Mi-Hwa;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2577-2583
    • /
    • 2009
  • Presented are the formation of iron oxide layers on evaporator tubes in an actual fossil power plant operated under all volatile treatment (AVT) condition and an experimental simulation of iron oxide formation in the presence of ferrous and ferric ions. After actual operations for 12781 and 36326 hr in the power plant, two iron oxide layers of magnetite on the evaporator tubes were found: a continuous inner layer and a porous outer layer. The experimental simulation (i.e., artificial corrosion in the presence of ferrous and ferric ions at 100 ppm level for 100 hr) reveals that ferrous ions turn the continuous inner oxide layer on tube metal to cracks and pores, while ferric ions facilitate the production of porous outer oxide layer consisting of large crystallites. Based on a comparison of the oxide layers produced in the experimental simulation with those observed on the actually used tubes, we propose possible routes for oxid layer formation schematically. In addition, the limits of the proposed corrosion routes are discussed in detail.

Micellar Enhanced Ceramic Microfiltration for Removal of Aqueous Ferrous Ion: Effect of Surfactant Concentration and $N_2$-back-flushing (용존 철(II) 제거를 위한 미셀형성 세라믹 정밀여과: 계면활성제 농도 및 질소 역세척의 영향)

  • Park, Jin-Yong;Kang, Sung-Gyu
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • In this study, sodium dedocyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove ferrous ions that could be contained with a small amount in industrial water. Then aggregates were formed by adsorption or binding of ferrous ions on the surface of micelles, and then rejected by ceramic membranes to remove ferrous ions. Ferrous concentration was fixed at 1mM and SDS was changed as $0{\sim}10mM$ to investigate the effect of the anionic surfactant. As a result, rejection rate of ferrous was the highest to 88.97% at 6mM. And we used ELS (Electrophoretic Light Scattering Spectrometer) to investigate particle size distribution of micellar aggregates depending on SDS concentration. Then distribution of large aggregates was the highest at 6mM. And we investigated effects of $N_2$-back-flushing time (BT) during periodic $N_2$-back-flushing on ceramic membranes. Finally optimal $N_2$-BT for NCMT-723l (pore size $0.10{\mu}m$) membrane was 20 sec.

Evaluation of effective process for oxidation and coagulation by ferrous ion and hydrogen peroxide

  • Moon, H.J.;Kim, Y.M.;Lee, S.H.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.319-321
    • /
    • 2003
  • This research was carried out to evaluate the removal efficiencies of CODcr and colour for the dyeing wastewater by ferrous solution in Fenton process. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of CODcr and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

  • PDF

The effect of iron ions on the reducing of natural organic matter and THMFP in ozonation (오존 처리 시 철 2가 이온이 자연유기물질과 트리할로메탄 저감에 미치는 영향)

  • Kwak, Yeonwoo;Lee, Seulki;Jang, Gyuhwan;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.447-456
    • /
    • 2019
  • This study focused on natural organic matter and trihalomethane removal by ozonation with various ferrous concentration in surface water. Ozonation is more affected by injection concentration than reaction time. dissolved organic carbon removal rates in ozonation increased with the increase in ferrous concentration. The highest removal was obtained at 6 mg/L of ferrous concentration. When 1 mg/L of ferrous was added with 2 mg/L of ozone concentration, it was found to be a rapid decrease in specific ultraviolet absorbance at the beginning of the reaction because ferrous acts as a catalyst for producing hydroxyl radical in ozonation. As ozone concentration increased, trihalomethane formation potential decreased. When 2 mg/L of ozone was injected, trihalomethane formation potential was shown to decrease and then increase again with the increase in ferrous concentration.

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

A new merging-zone flow injection system for the quantification of ferrous and ferric ions in aqueous solution and sludge of wastewater

  • Farhood, Ahmed Saleh;Taha, Dakhil Nassir
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.218-227
    • /
    • 2022
  • A simple and fast throughput flow injection (FI) system with a merging-zone technique was designed to determine ferrous and ferric in an aqueous solution. The method is based on the direct reaction of ferrous with a Bathophenanthroline reagent (Bphen) in acidic media. The forming red complex absorbs light at 533 nm. All conditions of the flow injection system were investigated. The analytical curve of ferrous was linear in the range of 0.07 to 4 mg/L with an r2 value of 0.9968. The detection and quantification limits were 0.02 and 0.04 mg/L, respectively. The molar absorptivity and Sandell's sensitivity were 4.0577 × 106 L/mol cm and 25 × 10-5 ㎍/cm2, respectively. The homemade valve was low-cost with high repeatability (n = 7) at an RSD of 1.26 % and zero dead volume. The values of the dispersion coefficient were 2.318, 2.022, and 1.636 for the concentrations of 0.2, 1, and 3 mg/L, respectively. The analysis throughput of the designed flow injection unit was 57 sample per hour.

Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells

  • Kim, Chi Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Amyloid-${\beta}$ peptide ($A{\beta}$), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of $A{\beta}$ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM $FeCl_2$, with 0.6 mM $FeCl_2$ treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM $FeCl_2$. APP-${\alpha}$-carboxyl terminal fragment (APP-${\alpha}$-CTF) associations with ADAM10 and APP-${\beta}$-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/ BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-${\alpha}/{\beta}$-CTF activation.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.