Browse > Article
http://dx.doi.org/10.5806/AST.2022.35.5.218

A new merging-zone flow injection system for the quantification of ferrous and ferric ions in aqueous solution and sludge of wastewater  

Farhood, Ahmed Saleh (Department of Chemistry, College of Science, University of Babylon)
Taha, Dakhil Nassir (Specialized Medical Sciences, University College of Al-Amal)
Publication Information
Analytical Science and Technology / v.35, no.5, 2022 , pp. 218-227 More about this Journal
Abstract
A simple and fast throughput flow injection (FI) system with a merging-zone technique was designed to determine ferrous and ferric in an aqueous solution. The method is based on the direct reaction of ferrous with a Bathophenanthroline reagent (Bphen) in acidic media. The forming red complex absorbs light at 533 nm. All conditions of the flow injection system were investigated. The analytical curve of ferrous was linear in the range of 0.07 to 4 mg/L with an r2 value of 0.9968. The detection and quantification limits were 0.02 and 0.04 mg/L, respectively. The molar absorptivity and Sandell's sensitivity were 4.0577 × 106 L/mol cm and 25 × 10-5 ㎍/cm2, respectively. The homemade valve was low-cost with high repeatability (n = 7) at an RSD of 1.26 % and zero dead volume. The values of the dispersion coefficient were 2.318, 2.022, and 1.636 for the concentrations of 0.2, 1, and 3 mg/L, respectively. The analysis throughput of the designed flow injection unit was 57 sample per hour.
Keywords
merging-zone; ferrous and ferric; bathophenanthroline; dead volume; homemade valve;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. P. Derman, A. Green, T. H. Bothwell, B. Graham, L. McNamara, A. P. MacPhail and R. D. Baynes, Ann. Clin. Biochem., 26(2), 144-147 (1989).   DOI
2 D., Kok and F. Wild, J. Clin. Pathol., 13(3), 241-246 (1960).   DOI
3 S. Annem, M.Sc. Thesis, Governors State University (2017).
4 N. Rajendraprasad and K. Basavaiah, Ind. J. Adv. Chem. Sci., 4(3), 302-307 (2016).
5 P. Niedzielski, M. D. Zielinska, L. Kozak, P. Kowalewski, B. Szlachetka, S. Zalicka and W. Wachowiak, Food Anal. Methods, 7(10), 2023-2032 (2014).   DOI
6 S. Chandramouleeswaran and J. Ramkumar, Int. J. Anal. Tech., 3(1), 1-5 (2017).   DOI
7 S. K. Patil, S. W. Kulkarni and S. P. Janwadkar, Int. J Chemtech Res., 10(6), 311-314 (2017).
8 N. A. Kasa and E. G. Bakirdere, Anal. Lett., 54(8), 1284-1294 (2021).   DOI
9 S. M. Haque and A. A. Judeh, Afr. J. of Agric. and Food Sci., 1(1), 36-43 (2018).
10 A. F. Khudhair and M. K. Hassan, Asian J. Chem., 29(12), 2725-2733 (2017).   DOI
11 K. M. Rahman, B. Biswas, T. Neger, N. Sharmin and L. Rahman, Indian J. Chem., 59, 790-796 (2020).
12 S. T. Abd-Al Abbas, S. I. Saeed and A. F. Hussain, Int. J. Pharm. Res., 12(2), 1339-1346 (2020).
13 K. Heikkinen, M. Saari, J. Heino, A. K. Ronkanen, P. Kortelainen, S. Joensuu and H. Marttila, Sci. Total Environ., 805, 150256 (2022).
14 E. Bulska and A. Ruszczynska, Phys. Sci. Rev., 2(5), (2017).
15 A. H. Mhemeed, Syst. Rev. Pharm., 12(1), 34-39 (2021).
16 E. Wyart, M. Y. Hsu, R. Sartori, E. Mina, V. Rausch, E. S. Pierobon and P. E. Porporato, EMBO Rep., 23(4), e53746 (2022).
17 P. Ravisankar, M. D. Shaheem, P. S. Babu, S. A. Basha, R. Aswini, V. Swathi, S. M. Sultana, M. S. Prasanna, N. Navyasri and I. M. Thanuja, Indo Am. J. Pharm. Res., 7(5), 8716-8744 (2020).
18 M. Trojanowicz and K. Kolacinska, Analyst, 141(7), 2085-2139 (2016).   DOI
19 D. Barcelo, "Comprehensive Analytical Chemistry: Advances in Flow Injection Analysis and Related Techniques", Edited by Spas D. Kolev (2008).
20 V. Kirakosyan and A. Davinyan, Der. Pharma. Chem., 13(5), 1-6 (2021).
21 M. A. Balarabe and A. Z. Folashade, World J. Appl. Chem., 4(3), 42-44 (2019).   DOI
22 S. Panchagnula, Int. J. Trend Res. Dev., 4(1), 397-399 (2017).
23 M. Adlim, I. Khaldun, M. Rahmi, U. Hasanah, S. Karina and Z. Zulkiram, In IOP Conference Series: Earth and Environmental Science, 348(1), 012007. IOP Publishing (2019, November).
24 M. Totan, E. Antonescu and F. G. Gligor, Indian J. Pharm. Sci, 80(2), 268-273 (2018).   DOI
25 F. Cheng, T. Zhang, C. Yang, H. Zhu, Y. Li, T. Sun and C. Zhou, Microchem. J., 179, 107478 (2022).
26 A. A. Quezada, K. Ohara, N. Ratanawimarnwong, D. Nacapricha, H. Murakami, N. Teshima and T. Sakai, Talanta, 144, 844-850 (2015).   DOI
27 M. J. Hopwood, A. J. Birchill, M. Gledhill, E. P. Achterberg, J. K. Klar and A. Milne, Front. Mar. Sci., 4, 192 (2017).
28 J. M. Almeida, A. B. Ribeiro, C. A. Toloza, I. C. Alves, J. R. Santos, L. C. De Azevedo and A. L. Marques, Anal. Lett., 55, 2325-2346 (2022).   DOI
29 S. Badakhshan, S. Ahmadzadeh, A. Mohseni-Bandpei, M. Aghasi and A. Basiri, BMC Chem., 13(1), 1-12 (2019).   DOI
30 K. H. Al-Sowdani and Y. S. Al-Jorany, J. of Babylon Univ./Pure and Appl. Sci., 20(2), 589-600 (2012).
31 Y. Huang, D. Yuan, M. Dai and Y. Liu, Talanta, 93, 86-93 (2012).   DOI
32 Z. O. Tesfaldet, J. F. van Staden and R. I. Stefan, Talanta, 64(5), 1189-1195 (2004).   DOI
33 V. A. Lapina, T. A. Pavich and P. P. Pershukevich, Opt. Spectrosc., 122(2), 219-228 (2017).   DOI
34 A. Ghorpade and M. M. Ahammed, Environ. Eng. Res., 23(1), 92-98 (2018).   DOI
35 M. J. Verschoor and L. A. Molot, Limnol. Oceanogr. Meth., 11(3), 113-125 (2013).   DOI
36 J. N. Miller and J. C. Miller, R. D. Miller, "Statistic and chemometrics for analytical chemistry", 7th Edition, Pearson (2018).
37 E. H. Evans and M. E. Foulkes, "Analytical chemistry: A practical approach", Oxford University Press. 2019 ). )
38 Z. H. Ma, P. Wang, N. Li, H. Y. Sun, J. Zhang, G. Q. Cao and S. Z. Lin, In IOP Conference Series: Earth and Environmental Science, 199(3), 032066. IOP Publishing (2018, December).   DOI
39 R. N. Pascoa, I. V. Toth and A. O. Rangel, Microchem. J., 93(2), 153-158 (2009).   DOI