• 제목/요약/키워드: ferromagnetic fluid

검색결과 16건 처리시간 0.02초

MR 유체 작동기의 전자기적 설계 방법 (Electromagnetic Design Methodology for MR Fluid Actuator)

  • 남윤주;문영진;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

MR Fluid Jet Polishing 시스템을 이용한 금형코어재료 연마특성에 관한 연구 (Polishing Characteristics of a Mold Core Material in MR Fluid Jet Polishing)

  • 이정원;하석재;조용규;조명우;이강희;제태진
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.74-79
    • /
    • 2013
  • The ultra-precision polishing method using MR fluid has come into the spotlight for polishing metals and optical materials. The MR fluid jet polishing process can be controlled using a change of viscosity by an imposed magnetic field. The MR fluid used for polishing process is a mixture of CI particles, DI water, $Na_2CO_3$ and glycerin. The efficiency of polishing depends on parameters such as polishing time, magnetic field, stand-off distance, pressure, etc. In this paper, the MR fluid jet polishing was used to polish nickel and brass mold materials, which is used to fabricate backlight units for 3-D optical devices in mobile display industries. In MR jet polishing, ferromagnetic materials like nickel can decrease the polishing efficiency by interaction with the cohesiveness of the MR fluid more than non-ferromagnetic materials like copper. A series of tests with different polishing times showed that the surface roughness of brass (Ra=1.84 nm) was lower than that of nickel (Ra=2.31 nm) after polishing for 20 minutes.

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Steric Stabilization에 의한 석유분산매 자성유체의 제조 (Preparation of Kerosine-Based Magnetic Ferrofluid by Steric Stabilizaton)

  • 신학기;장현명;김태옥
    • 한국세라믹학회지
    • /
    • 제27권5호
    • /
    • pp.684-692
    • /
    • 1990
  • Ultrafine magnetite powder for the ferromagnetic fluid was prepared by an addition of alkaline solution to the solution containing Fe2+ and Fe3+ ions at 6$0^{\circ}C$. The optimum condition of the magnetite synthesis was delineated by examining such various physico-chemical properties as Fe2+/Fe+3 ratio in the powder, phase characteristics, MHC and $\sigma$max. A new scheme for the steric stabilization of colloidal dispersion was proposed using the concept of the buffer group action for the increased interfacial density of the stabilizing moieties at colloid particle/dispersion medium interface. The proposed concept was successfully applied to the preparation of the kinetically stable kerosinebased ferrofluid using Tween and Span as dispersants. In the dispersion of magnetite particles in a kerosine, Tween(polyoxyethylene sorbitan oleate) acts as a primary stabilizer which provides an anchor group, whereas Span(sorbitan oleate) can be classified as a secondary stabilizer which adsorbs on the surface of magnetite particle through the action of the buffer group. Dispersion studies using various quantities of Tween and Span supported the concept of the buffer group action for increased dispersion characteristics of the kerosine based ferromagnetic fluid.

  • PDF

지적투약시스템을 위한 자성유체 캡슐의 위치 제어 (Position Control of Capsule Filled with Magnetic Fluid for Targeted Drug Delivery System)

  • 안창호;남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1166-1173
    • /
    • 2004
  • In this paper, in order to apply magnetic fluid with superparamagnetic property as the substitute of ferromagnetic materials, physical properties of magnetic fluid are investigated. A targeted drug delivery system using a capsule filled magnetic fluid is proposed where a magnetic fluid capsule and cylinders are considered as a drug and vital organs, respectively. The dynamic governing equation of this system first is derived. Fluid viscosity, clearance between a cylinder and a magnetic fluid capsule, and levitation height with respect to different cylinder height are considered as major parameters to evaluate dynamic characteristics of the system. The experiments and simulations for the position control of the magnetic fluid capsule in various cylinders are conducted using PID controller. The results show that magnetic fluid with the superparamagnetic property can be applied to a targeted drug delivery system.

초음파 시험에 의한 자기유체의 탄성율 산정 (Elastic Modulus of Magnetic Fluids Evaluated by Ultrasonic Test)

  • 김종희;김건우;김철기;이승구;구만회
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.136-139
    • /
    • 2012
  • Magnetic nanoparticles for ferromagnetic fluids and magnetorheological fluids were prepared by chemical coprecipitation and mechanical milling, respectively. The surface-treated particles were dispersed at various weight ratios into a medium of polyethylene glycol. In order to evaluate the elastic modulus of the fluids, ultrasonic pulse velocities were measured with an ultrasonic test using transducers of 5MHz and 2.25MHz. The ultrasonic signals were only available with a transducer of 2.25 MHz at fluid concentrations of 5 mg/ml and lower. In the case of applying transducers over 2.25 MHz and concentrations over 5 mg/ml to the fluids, it was impossible to observe effective ultrasonic signals due to an excessive scattering of the pulses by the dispersed particles. Elastic moduli of the magnetorheological fluids were 5.44 GPa and 6.13 GPa with concentrations of 25 mg/ml and 50 mg/ml, respectively; these values were higher by 40% than the values of 4.04 GPa and 4.28 GPa of ferromagnetic fluids at the same concentrations. As for the effect of an external magnetic field on these dilute fluids, the ultrasonic signals were positioned in a very similar way, which was probably due to insufficient arrangement of the particles even though the reflection energy of the ultrasonic waves apparently increased.

공작기계 적용을 위한 MR 클러치 설계 (Design of a Magneto-Rheological Fluid Clutch for Machine Tool Application)

  • 김옥현
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.57-63
    • /
    • 2009
  • Magneto-Rheological(MR) fluid composes of a base fluid and ferromagnetic particles less than tens of micrometer size dispersed in the fluid. It is called as a smart material because its rheological properties are changable by a magnetic field. Its important applications are active devices such as controllable dampers and controllable clutches. The merit of those products is that their functional characteristics are controllable such that they enable active control strategies. This paper proposes an idea for machine tool applications of the MR fluid clutch as a safety device for power transmission. FEM has been used for magnetic field analyses and the results are compared with some former experiments. Some design syntheses of the MR clutches are suggested and hopefully considered that it may be an effective safety device for power transmission of machine tools.

  • PDF

MR유체를 이용한 유량제어 밸브 (Development of Flow Control Valve Using MR Fluid)

  • 이형돈;배형섭;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

MR 밸브의 전자기적 설계와 성능 평가 (Electromagnetic Design and Performance Evaluation of an MR valve)

  • 김기한;남윤주;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.968-973
    • /
    • 2007
  • This paper presents an electromagnetic design for the magneto-rheological fluid valve. The MR valve can control high-level fluid power without moving parts, due to the apparent viscosity controllability of the MR fluid in magnetic fields. In order to improve the static characteristic of the MR valve, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Then, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross sectional area through which the flux passes. Two MR valves, one is a conventional type valve and the other is the proposed one, were fabricated and performance evaluation is experimentally achieved through the comparison study using by-pass damper system.

  • PDF

자성유체 밀봉시스템의 치 형상에 따른 내압 특성해석 (Characteristic Analysis of the Magnetic Fluid Seal considering the Shape of the Pole Piece)

  • 김동훈;한송엽;박관수;이기식
    • 한국자기학회지
    • /
    • 제4권1호
    • /
    • pp.56-61
    • /
    • 1994
  • 자성유체는 액체상태의 강자성체로서 가해진 자계의 세기에 따라 유체의 형상이 변하며, 이러한 유체의 형상변화는 자계의 세기를 다시 변화시키므로 자성유체를 응요한 기기를 해석하기 위해서는 유체의 형상과 자기장을 동시에 구해야 한다. 본 논문에서는 중력, 압력 자계의 세기 등에 따라 변하는 자성유체의 형상을 기존의 간략화된 가정 없이 직접 구하기 위하여 비선형 유한요소법과 유체방정식을 모두 해석할 수 있는 알고리즘을 제시하였다. 본 방법을 이용하여 각각의 외부조건에 상응하는 자성유체의 형상을 구하였고 실험을 통하여 얻은 유체 형상과 비교하였으며 이를 토대로 자성유체의 양과 치(pole piece)의 형상변화에 따른 빌봉시스템의 내압 특성을 해석하였다.

  • PDF