• 제목/요약/키워드: ferritic steel

검색결과 249건 처리시간 0.163초

Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS)

  • Macia, E.;Garcia-Junceda, A.;Serrano, M.;Hong, S.J.;Campos, M.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2582-2590
    • /
    • 2021
  • The high-energy milling is one of the most extended techniques to produce Oxide dispersion strengthened (ODS) powder steels for nuclear applications. The consequences of the high energy mill process on the final powders can be measured by means of deformation level, size, morphology and alloying degree. In this work, an ODS ferritic steel, Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3-0.6Zr, was fabricated using two different mechanical alloying (MA) conditions (Mstd and Mact) and subsequently consolidated by Spark Plasma Sintering (SPS). Milling conditions were set to evidence the effectivity of milling by changing the revolutions per minute (rpm) and dwell milling time. Differences on the particle size distribution as well as on the stored plastic deformation were observed, determining the consolidation ability of the material and the achieved microstructure. Since recrystallization depends on the plastic deformation degree, the composition of each particle and the promoted oxide dispersion, a dual grain size distribution was attained after SPS consolidation. Mact showed the highest areas of ultrafine regions when the material is consolidated at 1100 ℃. Microhardness and small punch tests were used to evaluate the material under room temperature and up to 500 ℃. The produced materials have attained remarkable mechanical properties under high temperature conditions.

Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

  • Zhang, D.Q.;Shi, C.;Li, J.;Gao, L.X.;Lee, K.Y.
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.8-14
    • /
    • 2017
  • The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동 (Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading)

  • 김동현;박기원
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

전기비저항, 바크하우젠노이즈 및 탄화물 분석법을 이용한 2.25Cr-1Mo 강의 열화도 평가 (Evaluation of degradation in aged 2.25CrMo steel by electrical resistivity, magnetic Barkhausen noise and carbide analysis)

  • 변재원;표승우;권숙인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.210-215
    • /
    • 2001
  • The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.

  • PDF

$620^{\circ}C$급 터빈 케이싱용 고Cr 페라이트강의 용접성 (Weldability of $620^{\circ}C$ Grade High Cr Ferrite Cast Steel for Turbine Casing)

  • 변지철;방국수;권희경;지병하
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.274-276
    • /
    • 2006
  • Weldability of high Cr ferritic steel for $620^{\circ}C$ grade turbin casing were investigated. The effect of carbon content on the cold and hot cracking susceptibility and HAZ softening was determined. The cast steel with higher carbon content showed higher HAZ hardness because of the dissolution of cabonitrides during welding thermal cycle. Moreover, it showed higher solidification cracking sensitivity because of the little S-ferrite formation in weld metal. Both steels showed HAZ softening at $900^{\circ}C$ peak temperature after PWHT.

  • PDF

가속냉각강 GMAW 용접이음부의 강도 변화 (Variation of Welded-Joint Tensile Strength of GMA Welded Accelerated-Cooled Steel)

  • 방국숙;정성욱
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.83-88
    • /
    • 2000
  • Variation of welded-joint hardness and tensile strength of a accelerated-cooled fine-grained ferritic-pearlitic steel with heat input was investigated. In a weld heat-affected zone, a softened zone was formed and it had lower hardness than that of a base metal. While the width of a softened zone increased continuously with an increase of heat input up to 100kJ/cm. the minimum hardness in a softned zone was almost constant after a continuos decrease up to 60KJ/cm. Because of a softened zone, the welded-joint was fractured in the HAZ and its maximum reduction of tensile strength was about 20%. Measured welded-joint tensile strength and calculated minimum tensile strength in a welded-joint was almost same, which means that the plastic restraint of a softened zone did not occur in this experiment. It is believed that as a softened zone width-to-specimen thickness ratio is as high as 2~6 in this experiment, the plastic restraint effect does not occur. Theoretical analysis shows that the plastic restraint effect occurs only when the ratio is below 0.5.

  • PDF

A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique

  • Jeong, Bong-Yong;Ryou, Min;Lee, Chongmu;Kim, Myung Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권1호
    • /
    • pp.20-23
    • /
    • 2014
  • Dual phase steels have a microstructure comprising of a polygonal ferrite matrix together with dispersed islands of martensite. There are clear differences between the image quality (IQ) map of the dual phase and the corresponding ferritic/pearlitic structures, both in the as-heat treated and cold rolled conditions. Electron backscatter diffraction (EBSD) techniques were used to study the evolution substructure of steel due to plastic deformation. The martensite-ferrite and ferrite-pearlite interfaces were observed. The interface can be a source of mobile dislocations which the bands seem to originate from the martensite islands. In particular, the use of image quality is highlighted.

화력발전소의 장수명화를 위한 Cr 강(鋼)의 고온 $SO_2$가스 부식저감 대책 기술 (Corrosion Prevention of Cr steels in $SO_2$ Atmosphere for Electrial Power Plants)

  • 이동복;최정호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.114-115
    • /
    • 2007
  • The corrosion characteristics of Cr steels were investigated to protect Cr steels from the SO2-gas corrosion in the coal-fired power plant. The samples tested were low alloy ferritic steel (ASTM T22, 23), martensitic steel (ASTM T91, 92, 122), and austenitic stainless steel (ASTM 347HFG). The corrosion tests were performed between 600oC and 1000oC in Ar + (0.2, 1)%SO2 gas for 100 hr. Chromium was quite beneficial to corrosion resistance, while iron was not. The corrosion resistance increased in the order of T22, T23, T91, T92, T122, and 347HFG.

  • PDF

머플러 부품의 경량화를 위한 STS강판의 TWB 용접 (I) - STS강판의 레이저 맞대기 용접특성 - (Tailored Blank Welding of Stainless Steel to Make Lightweight Design Muffler (I) - Laser Butt Welding Characteristic of Stainless Steel Sheet -)

  • 김용;박평원;박기영;이경돈;김석진
    • 한국레이저가공학회지
    • /
    • 제17권2호
    • /
    • pp.11-18
    • /
    • 2014
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. Specially we tried to apply the TWB technique to exhaust system. The materials used in this work were ferritic 439 stainless steel sheet with a thickness of 1.2mm and 0.8mm. Welding tests were conducted for BOP test and dissimilar thickness (0.8 to 1.2t) cases. Major process parameters were position of focus, travel speed, shielding gas and joint (gap) condition. As a result, there are nothing significant welding characteristic compare with TWB of carbon steel. Stainless steel shows the good weldability and mechanical properties (tensile, hardness and forming strength) also shows high level. Just problem is gap condition. However, also in this case, it shows not only good forming strength but also base metal fracture after tensile test. And to conclude, it is good opportunity to make lightweight design muffler using TB welding technique.

  • PDF