Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.1.20

A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique  

Jeong, Bong-Yong (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET))
Ryou, Min (M&M Plant Co., Ltd.)
Lee, Chongmu (Department of Materials Science and Engineering, Inha University)
Kim, Myung Ho (Department of Materials Science and Engineering, Inha University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.1, 2014 , pp. 20-23 More about this Journal
Abstract
Dual phase steels have a microstructure comprising of a polygonal ferrite matrix together with dispersed islands of martensite. There are clear differences between the image quality (IQ) map of the dual phase and the corresponding ferritic/pearlitic structures, both in the as-heat treated and cold rolled conditions. Electron backscatter diffraction (EBSD) techniques were used to study the evolution substructure of steel due to plastic deformation. The martensite-ferrite and ferrite-pearlite interfaces were observed. The interface can be a source of mobile dislocations which the bands seem to originate from the martensite islands. In particular, the use of image quality is highlighted.
Keywords
Dual phase steel; Martensite; Ferrite; EBSD; IQ map; Pearlite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber and M. Calcagnotto, Acta Materialia. 59, 4387 (2011).   DOI
2 P. H. Chang, A. G. Preban, Acta Metall. 33, 897 (1985).   DOI   ScienceOn
3 Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55 (1995).   DOI
4 P. Tsipouridis, E. Werner, C. Krempaszky, E. Tragl, Steel Res. Int. 77, 654 (2006).   DOI
5 M. Calcagnotto, D. Ponge and D. Raabe, ISIJ International. 48, 1096 (2008).   DOI
6 M. Calcagnotto, D. Ponge and D. Raabe, Mater. Sci. Engin. A 527, 7832 (2010).   DOI
7 T. Sakaki, K. Sugimoto, T. Fukuzat, Acta Metall. 31, 1737 (1983).   DOI   ScienceOn
8 D. L. Bourell, A. Rizk, Acta Metall. 31, 609 (1983).   DOI
9 M. Sarwar, R. Priestner, J. Mater. Sci. 31, 2091 (1996).   DOI
10 C. L. Magee, R. G. Davie: Acta Metall. 20. 1031 (1972)   DOI
11 M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).   DOI   ScienceOn
12 D. A. Korzekwa, D. K. Matlock and G. Krauss, Met. Trans. A 1221 (1984).
13 M. Erdogan and S. Tekeli, Mater. and Design. 23, 597 (2002).
14 F. J. Humphreys and M. Ferry, Mater. Sci. Technol. 13, 85 (1997).   DOI
15 M. P. Black and R. L. Higginson, Scripta Mater. 41, 125 (1999).   DOI
16 A. J. Wilkinson, Mater. Sci. Tech. 13, 79 (1997).   DOI
17 B. K. Kim and J. A. Szpunar, Scripta Mater. 44, 2605 (2001).   DOI   ScienceOn
18 B. Y. Jeong, Korean J. Met. Mater. 50, 867 (2012).
19 F. J. Humphreys, Journal of Mater. Sci. 36, 3833 (2001).   DOI   ScienceOn
20 J. M. Moyer and G. S. Ansell, Metall. Trans. A. 1785 (1975).
21 N. K. Balliger and T. Gladman, Met. Sci. 15, 95 (1981).
22 W. C. Leslie, McGraw-Hill, NY, 97 (1981).
23 M. Kumar, A. J. Schwarz and W. E. King, Mater. Sci. and Eng. A 309-310, 78 (2001).   DOI
24 T. Sakaki, K. Sugimoto, T. Fukuzato, Acta Metall. 31, 1737 (1983)]   DOI   ScienceOn
25 C. L. Magee, R. G. Davies, Acta Metall. 19, 345 (1971).   DOI
26 M. Kamaya, Ultramicroscopy, 11, 1189 (2011).
27 S. Wronski, J. Tarasiuk, B. Bacroix, A. Baczmanski, C. Braham, Mater. Characterization, 73, 52 (2012).   DOI
28 Y. D. Huang, W. Y. Yang and Z. Q. Sun, J. of Mater. Processing Technol. 134, 19 (2003).   DOI
29 A. Rizk, D. L. Bourell, Scripta Metall. 16, 1321 (1982).   DOI
30 M. Kurita, K. Toyama, S. Nomura and K. Kunishige, J. of ISIJ. 81, 1091 (1995).
31 A. W. Wilson, J. D. Madison and G. Spanos, Scripta Mater. 45, 1335 (2001).   DOI