• Title/Summary/Keyword: fermenter

Search Result 227, Processing Time 0.02 seconds

Cultural Characteristics and Scale-up for Submerged Cultivation of Hericium erinaceum Through Air-lift and Jar Fermenter System (Air-lift 및 Jar Fermenter에 의한 Hericium erinaceum 심부배양의 배양특성 및 Scale-up)

  • Jung, Jae-Hyun;Lee, Keun-Eok;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • For the study of Hericium erinaceum as a useful functional foods and materials, liquid cultivation under two different bioreactors(air-lift fermenter and jar fermenter) which was not studied systematically until now, was conducted as a method of mass cultivation for H. erinaceum. A batch cultivation in an air-lift fermenter and a jar fermenter was examined for enhancing the productivity because of small amounts of mycelial weight and slow growth in case of a liquid culture for H. erinaceum. We found that air lift fermenter system was more effective than jar fermenter for mycelial production of H. erinaceum, and mycelial morphology was a critical factor of the growth. By scale-up and cultivation based on morphological analysis, the conditions for mass production with 30 L and 500 L jar fermenter was 200 and 150 rpm of agitation speed at 1 vvm of aeration rate, respectively, and mycelial dry weight under these conditions was enhanced to about $13{\sim}14g/L$.

Recovery of Dissolved Volatile Fatty Acids from Liquid Sludge using Anaerobic Membrane-fermenter System (혐기성 분리막을 이용한 액상 슬러지로부터의 용해성 저급 지방산의 회수)

  • Kim, Jong-Oh;Kim, Seog-Ku;Kim, Ree-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2004
  • The performance of a membrane-coupled anaerobic fermenter system for the recovery of volatile fatty acids (VFAs) from liquid organic sludge was experimentally investigated. Permeation flux was stably kept around $0.2(m^3/m^2/day)$ during operational period. The membrane-coupled fermenter showed 2.2 times higher VFAs concentration and higher VFAs forming rate than those of fermenter without membrane. The fermenter with membrane proved to be an effective system for the recovery of soluble organic materials from liquid sludge.

Study Case on the Bag Cultivation of Pleurotus ostreatus Using Fermenter (발효기를 이용한 느타리버섯 봉지재배 경영사례)

  • Chang, Hyun-You;Suh, Gyu-Sun;Lee, Soo-In
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.169-181
    • /
    • 2008
  • The purpose of this study was to produce Pleurotus ostreatus using fermenter with bag cultivation. These results are as follows. 1. While mushroom composts were being fermented in a fermenter, the physical property of the fermented composts was getting better when there isn't any screw or revolving flies in the fermenter and the strength of pressing the composts was getting less. 2. The composts were fermented well as slaked lime of 1% density added to the composts. 3. According to the result of examining our fermenting ways, composts were in the best condition after being fermented for 48 hours since the temperature in a fermenter has come to 60℃, which could be reached by heating the fermenter by 40℃ after putting compost materials and water into it. 4. The good condition of fermenting could be maintained by controlling the speed of revolving flies, therefore the speed be down when the temperature is above 60℃ and up bellow 60℃. 5. Since the composts had been added with 1.5~2% of cottonseed meal or rice bran, the fermented composts were in good condition and also the quantity and quality of the mushroom produced on the fermented composts were satisfied. 6. There were needed 7 hours of labour for 3days from the first day of putting composts into a fermenter for fermenting 3.5M/T(10,000~12,000bags of 750~800g per bag) of composts to the third day of finishing the fermenting work, and also the cost was 112,066₩(130$) including 52,066₩(60$) of electric charge and fuel expense.

Liquefaction and Saccharification Conditions of Potatoes for Alcohol Fermentation Using Potatoes (감자 알콜발효를 위한 액화 및 당화조건)

  • 정용진;서지형;윤성란;이진만;이기동;김옥미;방광웅
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.94-98
    • /
    • 2000
  • To produce liquor and vinegar using potatoes needs to liquefy and sacchrify potatoes . So selecting the efficient fermenter for proceeding these process successfully is very important . This study was investigated several fermenter and crush types of potatoes for alcohol fermentation. Final sugar contents was high in pottoes saccharificatiion by nuruk or crude enzyme. But pure enzyme and blucoamylase ended liquefaction and saccharificatiion within short ime. So complex type fermenter mixed several fermenters was superior to single type fermenter. Complexfermenter III using crude enzyme and glucoamyulase saccharificed excellently potatoes with 150% of water contents by treatment of 3 hours. Through alcohol fermentation using pressure steamed potatoes (PSP), it could be obtained 6.4% , 150%, of alcohol content and yield. However to perform a series process efficiently , crush steamed pottoes (CSP) was suitable. When it was fermented after saccharification using crush steamed potatoes and complex fermenter III, it could be obtained 6.6% of alcohol and 6.7% of acidity.

  • PDF

Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge (유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • As the experimental results of membrane application for the production and recovery of volatile fatty acids, suspended solids concentration, the number of acid producing bacteria and organic acid concentration increased with membrane coupling in the fermenter. The application of membrane for the efficiency increase of solid-liquid separation and fermentation made the number of acid producing bacteria increase in the fermenter, thus acid forming rate showed higher value than that of membrane-free fermenter. Membrane-coupled fermenter was believed to be an effective technology for the improvement of recovery efficiency of volatile fatty acids from organic sludge.

Feedback Control of Dissolved Oxygen with Hardware Modification of Fermenter (발효기 하드웨어 변환을 이용한 용존산소 제어)

  • 이중헌;이인영;박영훈
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.280-284
    • /
    • 2000
  • The simple imcroprocessor device was provided for the control of dissolved oxygen(DO) level. The DO analog signal output from fementer was used as a measurement variable and the agitation speed of fermenter was used as a manipulatio variable. Agitation speed was manipulated to maintain DO level above 10% of saturation condition during cell growth period with microprocessor. Since the experimental resultsshowed that the DO level was maintained above 10% and agitation speed was inverse proportional to DO level ithis simple control device can be used for the DO control of fermenter.

  • PDF

Condition of Exo-polysacchride Production from Submerged Mycelial Culture of Ganoderma lucidum by Using Air-lift Fermenter System (Air-lift Fermenter System을 이용한 Ganoderma lucidum 균사체의 심부배양에 의한 세포외 다당류의 생산 조건)

  • 이신영;강태수;이만춘
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.547-553
    • /
    • 1998
  • For the efficient production of a new exo-polysaccharide from Ganoderma lucidum ASI 7004, the optimum conditions and methods in submerged cultivation were investigated with an airlift fermenter system. The optimum aeration rate was 2.5 Wm at the initial pH 5.0 and 28$^{\circ}C$. The increase of dissolved oxygen concentration by pure oxygen supply during cultivation did not improved the exo-polysaccaride production and the mycelial growth. The maximum exo-polysaccharide production and the mycelial growth under the optimum culture condition were obtained in media of glucose 60g/L, yeast extract 6g/L, (NH4)2HPO4 1g/L and KH2PO4 0.5g/L. Under these optimum medium and culture conditions, about 7.15g/L of exo-polysaccharide and 13.9g/L of mycelial growth were producted, respectively.

  • PDF

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

Hydrogen and Methane Production from Mixture of Food Wastewater and Swine Wastewater using Two-Phase Anaerobic Process (이상 혐기성 공정을 이용한 음식물류폐기물폐수와 양돈폐수의 혼합액으로부터 수소 및 메탄 생산)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • This study has been conducted to derive the bio-energy, hydrogen and methane production, from mixture of food wastewater and swine wastewater, the high strength organic wastewater and to increase effluent quality. To overcome this limitation in one-phase anaerobic process, two-phase anaerobic process combining hydrogen fermenter and methane fermenter was applied. In this system $2,323ml\;H_2/L$ was produced daily from Run II where 500 ml of heattreated sludge in methane fermenter was injected, and methane produced from methane fermenter did not show big difference regardless of the amount of returning sludge at each Run. It was concluded that the two-phase anaerobic process was the appropriat process to produce hydrogen and methane simultaneously and stably. Influent $TCOD_{Cr}$ to two-phase anaerobic process showed the range of 132~145 g/L(average 140 g/L), and effluent $TCOD_{Cr}$ range was 25~40 g/L(average 32 g/L), and organic removal efficiency showed 71~82%(average 76.3%).

Commercial Production and Separation of Catalase Produced by Micrococcus sp.

  • Lee, Ho;Suh, Hyung-Joo;Yu, Hee-Jong;So, Sung;Oh, Sung-Hoon
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • A Micrococcus sp. producing catalase was isolated from soil, and a commercial-scathe cultivation and purification of catalase were conducted. The maximum catalase activity was about 103 BU/mL obtained after 46 hr of cultivation in a 30 L fermenter containing 2% glucose, 2% peptone, 4% yeast extract, and 0.5% NaCl. Soybean sauce, CSL (corn steep liquor), and yeast extract were also studied as media substitutes in the media 30 L fermenter. The optimum medium components for the production catalase were found to be 2% glucose, 4% soybean sauce, and 16% CSL. In a 18 kL fermenter, the stationary phase in the cell growth and maximum catalase activity (112 BU/mL) were reached after 46 hr of cultivation, which was the same result as in the 30 L fermenter. The catalase activity was purified with over 17 folds in four steps with a 33.6% yield. From 104,250 mg of protein after cell lysis, 1,966 mg of the purified enzyme with a specific activity of 192.7 kBU/mg was obtained. The residual activity with the addition of 10% NaCl exhibited more than 100%. The use of just NaCl produced a higher residual activity than combination of bencol (benzyldimethyl ammoniumchloride) and PG (propyleneglycol).