• Title/Summary/Keyword: fermented bacteria

Search Result 1,250, Processing Time 0.03 seconds

Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food

  • Jeong, Do-Won;Kim, Hye-Rim;Jung, Gwangsick;Han, Seulhwa;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.648-660
    • /
    • 2014
  • Doenjang, a traditional Korean fermented soybean paste, is made by mixing and ripening meju with high salt brine (approximately 18%). Meju is a naturally fermented soybean block prepared by soaking, steaming, and molding soybean. To understand living bacterial community migration and the roles of bacteria in the manufacturing process of doenjang, the diversity of culturable bacteria in meju and doenjang was examined using media supplemented with NaCl, and some physiological activities of predominant isolates were determined. Bacilli were the major bacteria involved throughout the entire manufacturing process from meju to doenjang; some of these bacteria might be present as spores during the doenjang ripening process. Bacillus siamensis was the most populous species of the genus, and Bacillus licheniformis exhibited sufficient salt tolerance to maintain its growth during doenjang ripening. Enterococcus faecalis and Enterococcus faecium, the major lactic acid bacteria (LAB) identified in this study, did not continue to grow under high NaCl conditions in doenjang. Enterococci and certain species of coagulase-negative staphylococci (CNS) were the predominant acid-producing bacteria in meju fermentation, whereas Tetragenococcus halophilus and CNS were the major acid-producing bacteria in doenjang fermentation. We conclude that bacilli, LAB, and CNS may be the major bacterial groups involved in meju fermentation and that these bacterial communities undergo a shift toward salt-tolerant bacilli, CNS, and T. halophilus during the doenjang fermentation process.

Microbiological Characteristics and Cytoprotective Effects of Samjung-Hwan Fermented by Lactic Acid Bacteria (유산균을 이용한 발효삼정환의 미생물 특성 및 세포 보호 효과)

  • Chang, Seju;Wang, Jing-Hua;Shin, Na Rae;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives: To confirm microbiological change and cytoprotective effect of Samjung-hwan (SJH) which fermented by Lactic acid bacteria from natural fermented SJH. Methods: SJH was fermented by Lactobacillus brevis and Lactococcus lactis subsp. lactis from natural fermented SJH. After 1 week of fermentation, we analysed pH and microbial profiling. We also performed measuring total polyphenol total flavonoid contents and 1,1-Diphenyl-2-picryhydrazyl (DPPH) free radical scavenging activity to investigate antioxidant ability. Cell viability was performed by using HepG2 cell. Results: pH of lactic acid bacteria inoculated group and non-inoculated group was decreased and total counts of lactic acid bateria for both group was increased after fermentation of SJH. Total polyphenol and flavonoid contents and DPPH free radical scavenging activity was increased in both group. Total polyphenol contents of lactic acid bacteria Inoculated group is more increased than non-inoculated group. HepG2 cell viability was increased in both group. Conclusions: SJH fermentd by Lactobacillus brevis and Lactococcus lactis subsp. lactis shows change in microbiological character and has cytoprotective effect. Further studies are required for investigating function of lactic acid bacteria during fermentation of SJH.

Influences of Squid Ink Added to Low Salt Fermented Squid on Its Changes in Lactic Acid Bacteria (저염 오징어 젓갈의 숙성 중 오징어 먹즙 첨가가 젖산균의 변화에 미치는 영향)

  • Oh, Sung-Cheon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.678-684
    • /
    • 2013
  • This study measured the change of lactic acid bacteria during the ripening fermentation process of low salt fermented squid with no squid ink added. All study groups showed increase of Leuconostoc and rapid growth of total plate count at the beginning stage of ripening and the maximum microbial count showed at the optimum stage of ripening which gradually reduced after the optimum stage. It is believed that Lactobacillus occupied the major part of the total plate count after the optimum stage of the squid fermentation, and it was related to the quality after the optimized ripening stage. Streptococcus and Pediococcus were gradually increased until the optimum stage of the ripening, and then decreased rapidly. Yeasts were detected in the middle stage of the fermentation and rapid increase was shown after the last stage of the fermentation which suggests that yeasts participate in putrefaction of the low salt fermented squid. The change of lactic acid bacteria observed during the ripening fermentation of low salt fermented squid with squid ink added was that the total plate count increased until ripening middle stage but showed a tendency to slightly reduce after the middle stage. The length of time to reach the maximum value was longer than the no treatment groups. Among the lactic acid bacteria, Leuconostoc, Streptococcus and Pediococcus has increased until the middle stage of the ripening while Lactobacillus constantly increased to the end part of the ripening. Yeasts had no increasing in the early ripening stage, but after middle of the ripening, it started to increase. That kind of tendency was similar to the case of no treatment groups. However, the amount of lactic acid bacteria tended to be less than no treatment groups. The tendency of decreasing number of all bacteria in low salt fermented squid with squid ink added shows squid ink restricts the growth of all bacteria.

Physicochemical Properties and Antioxidant Activities of Fermented Mulberry by Lactic Acid Bacteria (오디 유산균 발효물의 이화학적 특성 및 항산화 활성)

  • Lee, Dae-Hoon;Hong, Joo-Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.202-208
    • /
    • 2016
  • The physicochemical properties and antioxidant activities of fermented mulberry by lactic acid bacteria were investigated. The viable cell counts of lactic acid bacteria slowly increased up to 8.31 log CFU/mL. The pH and titratable acidity were 3.90 and 0.15%, respectively, after 24 h of fermentation. Color in terms of L and a values decreased, whereas b and ${\Delta}E$ values increased. The total anthocyanin contents of fermented mulberry (171.40 mg/100 g) was higher than that of mulberry (144.70 mg/100 g). The cyanidin-3-glucoside and cyanidin-3-rutinoside contents of fermented mulberry were 61.39 mg/100 g and 85.45 mg/100 g, respectively. Total phenolic and flavonoid contents of fermented mulberry (10.75 g/100 g and 5.02 g/100 g, respectively) was higher than those of mulberry (4.53 g/100 g and 1.77 g/100 g, respectively). The oxygen radical absorbance capacity of fermented mulberry was $292.94{\mu}M/g$. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide radical scavenging activity of fermented mulberry at $250{\sim}2,500{\mu}g/mL$ were 17.40~58.21% and 32.63~87.34%, respectively. The ferric reducing antioxidant power and reducing power of fermented mulberry at $250{\sim}2,500{\mu}g/mL$ were $37.03{\sim}762.13{\mu}M$ and 0.12~0.74, respectively. The results suggest that mulberry fermented by lactic acid bacteria has potential as functional materials in food industry.

Effects of Starter Cultures on the Quality Traits of Electron Beam Irradiated Fermented Meat during Aging (전자선 조사된 원료육과 Stater Culture의 사용이 발효육의 숙성 중 품질에 미치는 영향)

  • Lim, Dong-Gyun;Seol, Kuk-Hwan;Lee, Moo-Ha
    • the MEAT Journal
    • /
    • s.35 winter
    • /
    • pp.46-55
    • /
    • 2008
  • The microbiological and physicochemical properties of irradiated (2 kGy) or non-irradiated fermented meats processed with or without a commercial starter culture were evaluated during fermentation and aging. The pH of irradiated (2 kGy) fermented meats with starter cultures dramatically decreased during fermentation and aging (p<0.05), and the final pH was 4.25. The total aerobic counts and lactic acid bacteria counts reflected the addition of the starter culture. As the fermentation progressed, the total aerobic counts closely paralleled the lactic acid bacteria counts. The TBARS values of irradiated fermented meats increased regardless of the treatment during fermentation and aging. These results show that the irradiated(electron-beam) meat/fat resulted in the reduction of the total microbes and survives lactic acid bacteria. The use of starter cultures in meat batters post-irradiation may be useful for the production of fermented meats.

  • PDF

The improvement effect of anti-inflammation of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Lim, Jeong-Muk;Choi, Ui-Lim;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.111-111
    • /
    • 2018
  • Aronia (black chokeberry), a species of berries is source to a very large number of bioactive compounds like polyphenols, flavonoids, anthocyanins, and tannins in comparison to any other species. Owing to its antioxidant, anti-carcinogenic, anti-aging and anti-inflammatory properties. Fermentation- a bioconversion process exploiting the biological metabolic reaction of micro-organisms, has several benefits like improving the efficacy and safety of physiologically active substances, generation of new functional material, improving the adsorption rate and many others. Antigens like pathogens, food, pollen etc., generate a protective immune response in body tissues, and the process be referred to as inflammation. However, this when excessive results in a condition referred to as refractory inflammatory disease, whose incidence is increasing in the recent times, especially amongst children. The current study intended to assess the anti-oxidant activity, presence of polyphenols and anti-inflammatory efficacy of Aronia extract fermented by Lactic acid bacteria isolated from fermented sea foods. Aronia fruits collected from Sunchang, Chonbuk were lyophilized for fermentation. So as to maximise the efficacy of the fermented Aronia extract, the quantitative effects of lactic acid bacteria species, composition of extraction solution, influence of temperature and time on antioxidant activity and total polyphenol contents were investigated using an experimental design. Anti-inflammatory activity was evaluated on NO and cytokine ($TNF-{\alpha}$, IL-6) production in LPS activated Raw 264.7 cells. Results indicated that antioxidant effect and total polyphenol contents were best improved in extract of Aronia fermented by P. pentosaceus. In addition, NO and cytokine ($TNF-{\alpha}$, IL-6) levels were decreased significantly after fermentation. Thus, it was found that the anti-inflammatory activity of Aronia greatly increased after fermentation process using P. pentosaceus.

  • PDF

Effects of Starter Cultures on the Quality Traits of Electron Beam Irradiated Fermented Meat during Aging (전자선 조사된 원료육과 Stater Culture의 사용이 발효육의 숙성 중 품질에 미치는 영향)

  • Lim, Dong-Gyun;Seol, Kuk-Hwan;Lee, Moo-Ha
    • Food Science of Animal Resources
    • /
    • v.27 no.3
    • /
    • pp.308-313
    • /
    • 2007
  • The microbiological and physicochemical properties of irradiated (2 kGy) or non-irradiated fermented meats processed with or without a commercial starter culture were evaluated during fermentation and aging. The pH of irradiated (2 kGy) fermented meats with starter cultures dramatically decreased during fermentation and aging (p<0.05), and the final pH was 4.25. The total aerobic counts and lactic acid bacteria counts reflected the addition of the starter culture. As the fermentation progressed, the total aerobic counts closely paralleled the lactic acid bacteria counts. The TBARS values of irradiated fermented meats increased regardless of the treatment during fermentation and aging. These results show that the irradiated (electron-beam) meat/fat resulted in the reduction of the total microbes and survives lactic acid bacteria. The use of starter cultures in meat batters post-irradiation may be useful for the production of fermented meats.

Bacillus megatherium group에 의한 발효식품 연구 1

  • 계성렬;정윤수;이계호
    • Korean Journal of Microbiology
    • /
    • v.1 no.1
    • /
    • pp.26-29
    • /
    • 1963
  • 1. Cooked soybean was fermented for about a week by Bacillus megatherium 88-3, D-28 and D-28a; and compared with the cooked soybean which was not fermented, this fermented soybean showed much increase in vitamin $B_{12}$ and $B_2$, while vitamin $B_1$ decreased. 2. In the process of fermenting the cooked soybean, Bacillus megatherium, 88-3 is the bacteria which produces brown pigment; and Bacillus megatherium D-28 and D-28a is the bacteria which produces yellow pigment. 3. In weight, fermented soybean-fed rat showed more increase than the unfermented soybean-fed rat. But the growth of the rat fed with Bacillus megatherium 88-3 fermented soybean was not good. Probably, this phenomenon came from the trouble in rat's metabolism by brown pigment. 4. In food efficiency, Bacillus megatherium D-28a is 4.3% lower than Bacillus megatherium B-938, but it is 17.l% higher than the unfermented cooked soybean. Bacillus megatherium 88-3, which is 47.1% lower in food efficiency than the unfermented cooked soybean, has been found "not good" in the growth of rat.th of rat.

  • PDF

Effect of Rice Bran and Wheat Fibers on Microbiological and Physicochemical Properties of Fermented Sausages during Ripening and Storage

  • Jung, Ji-Taek;Lee, Jin-kyu;Choi, Yeong-Seok;Lee, Ju-Ho;Choi, Jung-Seok;Choi, Yang-Il;Chung, Yoon-Kyung
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.302-314
    • /
    • 2018
  • This study investigated the effect of rice bran fiber (RBF) and wheat fibers (WF) on microbiological and physicochemical properties of fermented sausages during ripening and storage. The experimental design included three treatments: Control, no addition; RBF, 1.5%; and WF, 1.5%. During the ripening periods, the addition of dietary fibers rapidly decreased pH and maintained high water activity values of fermented sausages (p<0.05). Lactic acid bacteria were more prevalent in fermented sausages with rice bran fiber than control and sausages with added wheat fiber. During cold storage, lower pH was observed in sausages with dietary fibers (p<0.05), and the water activity and color values were reduced as the storage period lengthened. Fermented sausages containing dietary fibers were higher in lactic acid bacteria counts, volatile basic nitrogen and 2-thiobarbituric acid reactive substance values compared to the control (p<0.05). The results indicate that, the addition of dietary fibers in the fermented sausages promotes the growth of lactic bacteria and fermentation, and suggests that development of functional fermented sausages is possible.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.