• Title/Summary/Keyword: fermentation temperature

Search Result 1,150, Processing Time 0.03 seconds

Development of Control System for Kimchi Fermentation and Storage Using Refrigerator (냉장고를 이용한 김치발효 및 저장 제어시스템의 개발)

  • Ko, Yong-Duck;Kim, Heung-Jae;Chun, Sung-Sik;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 1994
  • Software for refrigerator capable of both rapid fermentation and suitable storage of Kimchi was developed and its performance was investigated. Refrigerator system consists of an insulated fermentation room, heater, damper for the control of outer cold air and two sensors for recognizing temperature of heater and fermentation room, which control temperature and time period of affecting Kimchi fermentation. Effects of fermentation at different NaCl concentration and three fermentation function keys were studied; At key I, time which was elapsed to edible ripening state, pH 4.5 and total acid 0.6%, was about $3{\sim}4$, $4{\sim}5$ and $11{\sim}12$ days, respectively. At key II, time was about $2{\sim}3$, $3{\sim}4$, and $10{\sim}11$ days, and at key III, about 2, 3 and $9{\sim}10$ days, respectively. Effect of storage at three fermentation function keys was all maintained to the level of a palatable pH range until 14 days. Sensory evaluation of Kimchi showed also significant difference in a taste.

  • PDF

Fermentative Characteristics of Extruded Meju by the Molding Temperature (메주의 압출성형에서 성형온도에 따른 메주의 발효특성)

  • 변명우;김동호;육홍선;김기연;신명곤
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.250-255
    • /
    • 2001
  • Effect of molding temperature on the quality changes of extruded meju was studied. Meju was molded at 8$0^{\circ}C$, 6$0^{\circ}C$ and 4$0^{\circ}C$, and then stored at $25^{\circ}C$ with 50% of relative humidity for 30 days. The texture of the cooked soybean grain showed that the firmness and cohesiveness were increased, and consistency was decreased by decrease of molding temperature. The density of the meju molded at 8$0^{\circ}C$, 6$0^{\circ}C$ and 4$0^{\circ}C$ were 1.072g/mL, 1.079g/mL and 1.203g/mL, respectively. The meju molded at 4$0^{\circ}C$ had significantly higher density than those molded at 8$0^{\circ}C$ or 6$0^{\circ}C$. Also, delay of water evaporation, acidification, and rapid growth of fungal mycellium were observed on the sample with molding temperature at 4$0^{\circ}C$ during fermentation. Activity of amylase and protease, contents of total reducing sugar and amino nitrogen of 4$0^{\circ}C$-molded meju were represented lower level than those of 6$0^{\circ}C$ or 8$0^{\circ}C$-molded sample. Therefore, it was considered that the molding temperature was an important factor for meju fermentation and molding temperature of 6$0^{\circ}C$ or over would be acceptable.

  • PDF

FORMATION OF DIMETHYLAMINE IN THE COURSE OF ANCHOVY FERMENTATION WITH SALT (멸치 젓갈 숙성중의 dimethylamine의 생성)

  • PYEUN Jae-Hyeung;JEONG Bo-Young;HWANG Kum-Sho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.223-231
    • /
    • 1976
  • Dimethylamine(DMA) is known as an origin compound of dimethylnitrosamine which is responsible for carcinogenesis. It has been also reported that relatively large amount of DMA is distributed in fish muscle, particularly in salted and fermented fish. Tn this experiment, the degradation products of protein and trimethylaminoxide(TMAO) by the temperature conditions of $17^{\circ}C\;and\;27^{\circ}C$ in the course of anchovy fermentation with $22\%$ of salt were analysed, and the formation of DMA was discussed. Protein-N decreased through the whole fermentation period ill the conditions of $17^{\circ}C\;and\;27^{\circ}C$ whereas amino-N increased proportionally to the decrease of protein-N, and the increasing rate of amino-N was remarkably faster at $27^{\circ}C$ than at $17^{\circ}C$. Trimethylamine(TMA) gradually increased with the decrease of TMAO till 69th day of fermentation, hereafter tended to slightly decrease. It seemed that the difference in fermentation temperature affects on the formation of DMA and obviously on the variation of TMAO. Both DMA and TMA content were inversely varied with the TMAO content. Correlation coefficient of DMA to TMAO in quantitative variation was shown -0.811 at $17^{\circ}C$ and -0.865 at $27^{\circ}C$ of fermentation temperature respectively. The results suggested that the formation of DMA during fermentation of anchovy was attributed to the degradation of TMAO showing, contributorial ratio of 0.66 at $17^{\circ}C$ and 0.75 at $27^{\circ}C$ respectively.

  • PDF

Studies on Taste Compounds in Alaska Pollack Sikhae during Fermentation (전통 명태식해 숙성중의 정미성분에 관한 연구)

  • Cha, Yong-Jun;Kim, So-Jung;Kim, Eun-Jeong;Kim, Hun;cho, Woo-Jin;Yoo, Mi-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1515-1521
    • /
    • 2004
  • As one of the research series for the industrialization of sikhae, this study was evaluated the taste compounds present in different temperature conditions, $5^{\circ}C$, $20^{\circ}C$ and alternating temperature (stored at $5^{\circ}C$ after 10 days fermentation at $20^{\circ}C$), respectively. The changes in proximate compositions were negligible but the amounts of total sugar decreased during fermentation. The pH of sikhae products except the product fermented at $5^{\circ}C$, decreased during fermentation and was maintained at the rage of 3.8~4.4 after 10 days. The values of acidity, VBN and amino-N gradually increased with fermentation times and with increasing temperature condition in all products. Three organic acids (lactic, citric and malic acid) were disclosed as key compounds affecting the sourness in Alaska pollack sikhae. The result of taste value revealed that 6 amino acids having sweet and umami taste (aspartic acid, glutamic acid, alanine and lysine) and bitter taste (valine and methionine) as major amino acids affecting the taste of sikhae products, and increased with fermentation times. Hypoxanthine was the main component in ATP related compounds. Amino-N was comprised more over 50% of the Ex-N in sikhae products, and followed by total creatinine-N, TMAO-N and TMA-N in that order.

Studies on the Processing of Rapid- and Low Salt-Fermented Liquefaction of Anchovy(Engrulis japonica) (I) -Changes in Free Amino Acids during Fermentation and Quality Indices- (저식염 속성 멸치 발효액화물 가공에 관한 연구(I) -숙성 중 유리아미노산 변화 및 품질지표-)

  • Kang, Tae-Jung;Cho, Kyu-Ok;Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.2
    • /
    • pp.197-213
    • /
    • 2002
  • In order to establish the processing condition of rapid- and low salt-fermented liquefaction of anchovy (Engrulis japonica), effect of temperature on crude enzyme activity of anchovy viscera, pretreatment conditions, and the minimum content of adding NaCl were investigated. The minimum limitation of NaCl content for anchovy liquefaction was 10%. Sample A(water adding, heating, adding 10% NaCl): chopped whole anchovy adding 20% water and then heating for 9 hrs at $50^{\circ}C$ and then adding 10% NaCl and then fermented at room temperature$(8-29^{\circ}C)$ for 180 days. Sample B(water adding, heating, adding 13% NaCl): chopped whole anchovy adding 20% water and then heating for 9 hrs at $50^{\circ}C$ and then adding 13% NaCl and then fermented at room temperature for 180 days. Sample C(adding 13% NaCl): chopped whole anchovy and then adding 13% NaCl and then fermented at room temperature for 180 days. Sample D(adding 17% NaCl): whole anchovy adding 17% NaCl and then fermented at room temperature for 180 days. The content of free amino acids such as aspartic acid, serine and threonine fluctuated severely according to the pretreatment methods. Possibly they might be recommend quality indices of standardization for salt-fermented liquefaction of anchovy. As for the relation between fermentation period(X) and individual free amino acid(Y), five kinds of free amino acids such as glutamic acid, valine, glycine, lysine, and alanine showed highly significant in their coefficient of determination in most of samples. They might be recommend as quality indices for salt-fermented liquefaction of anchovy during fermentation. The difference of taste between products of the rapid- and low salt-fermented liquefaction and the traditional salt-fermented liquefaction were caused by their composition of the free amino acids ratios, in which were umami, sweet, and bitter taste in the extracts of anchovy during fermentation. The appropriate fermentation period of the sample A was shorten 30 days than the sample B and 60 days than the samples C and 90 days than the sample D in the processing of anchovy.

Effects of Aspergillus oryzae Inclusion on Corn Silage Fermentation

  • Chiou, Peter Wen-Shyg;Ku, Hsiao-Che;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1568-1579
    • /
    • 2001
  • This study is aimed at evaluating the effect of Aspergillus oryzae fermentation extract (AFE) on corn silage fermentation characteristics. Trial included two groups of treatments, with or without AFE inclusion in corn ensilage. Sixty corn silage containers, including two treatments with thirty replicates each, were processed in a laboratory scale mini-silo of 21 cm radius by 45 cm height. Three replicate containers were opened and sampled for analysis at 0, 0.5, 1, 2, 3, 4, 6, 10, 18 and 34 days after being ensiled. One silage container from each treatment was installed with a remote controlled electronic thermometer to record the temperature changes. Analysis included silage temperature, pH, fermentation acids, the water-soluble carbohydrates and chemical compositions and the silage protein fractions. Results showed that on the first day, the temperature of the ensiled corn was slightly higher than room temperature, but returned to room temperature on the second day. The pH and concentrations of WSC, ADF, lignin and acetic acid in the AFE treated silage were significantly lower than the control groups (p<0.05). The lactic acid and crude protein on the other hand were significantly higher in the AFE treated silage as compared to the control (p<0.05) at the end of the ensilage period. The DM content was significantly higher (p<0.05) whereas the butyric acid content of the AFE treated silage was significantly lower (p<0.05) than the control at the end of the 34 day ensilage period. Titratable acid and buffering capacity in the corn silage were not significantly different between treatment groups (p>0.05). Ammonia N concentration in the AFE treated silage showed a trend of decrease (p>0.05). NPN and the protein fraction A in both groups increased during the conservation period, but fraction A in the AFE treated corn silage was significantly higher than the control silage (p<0.05). During the conservation period, the AFE treated corn silage showed a trend toward a decrease in fractions $B_1$, $B_3$ and C (p<0.05). The protein fraction B2 showed a trend toward increase in the control group and an inconsistent trend in the AFE treated silage during the ensiling period. The AFE treated silage showed a better Flieg score over the control silage (97 vs. 75) as calculated from the concentrations of lactic acid, acetic acid and butyric acid.

Effects of Isoamyl Acetate Production in Makgeolli According to Fermentation Conditions (막걸리 발효조건에 따른 isoamyl acetate 생성 비교)

  • Song, Choong Sung;Ju, Hyun-Mok;Kim, Jin Man
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.162-168
    • /
    • 2020
  • Because of a continual reduction in its domestic market share, the quality of the Makgeolli, a Korean traditional liquor, needs to be upgraded. Among the several options for quality improvement, sufficient organoleptic expression of flavor is very important. We analyzed production changes of isoamyl acetate, which has a banana smell, based on fermentation temperature and sugar content through the cultivation of S. cerevisiae 98-5 KCCM 11396P using generally polished rice. The banana flavor of that fermentation mash was organoleptically high at 20℃, but a larger amount of isoamyl acetate was obtained with a higher sugar content at 10℃, based on analysis by GC-MS. Consequently, sufficient production of banana flavor from isoamyl acetate was based on the concentration of isoamyl alcohol as a substrate compound of isoamyl acetate, and the production depended highly on the maintenance of heat stability, since it is unstable in temperature and the minimized inhibition of alcohol acetyl transferase by unsaturated fatty acids. We also found that production of the flavor component required the addition of sugar and a slightly higher temperature of 20~25℃ at the beginning stage of fermentation, with additional mash fermentation and a gradual decrease in temperature to 10~15℃.

Quality Characteristics of Seoktanju Fermented by using Different Commercial Nuruks (시판누룩 사용 별 석탄주의 품질특성)

  • Choi, Ji-Ho;Jeon, Jin-A;Jung, Seok-Tae;Park, Ji-Hye;Park, Shin-Young;Lee, Choong-Hwan;Kim, Tack-Joong;Choi, Han-Seok;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • We investigated quality characteristics of Seoktanju (one of the Korean traditional rice wine) which was fermented using five kinds of Korean commercial Nuruks. The purpose of this study was to research what effects on the quality of Seoktanju by using different Nuruks. We analyzed general component such as each mash's temperature change patterns, pH, titrable acidities, reducing sugar contents, volatile acids, and sugar contents during fermentation periods and studied sensory evaluation of produced Seoktanju (10 days). On the whole, temperature change patterns in the each mashes were depend on room temperature. All Seoktanju's pH was reduced rapidly up to three days after first mashing (pH 3.13-3.57) and after that was increased gradually. The end of fermentation pH was pH 3.6-4.05. Mostly, acidities were indicated high(0.59%) and Nuruk-B was showed highest acid value. These results seems to be different as occasion organic acids producing activity depend on the number of yeast, material contents, optimal temperature in the each mashes by fungi and lactic acid bacteria in Nuruks. In reducing sugar contents and sugar contents, Nuruk-C treatment were showed the highest value with 5.36%, $23^{\circ}brix$, respectively and alcohol content was lowest with 8.6%. In the five kinds of reproduced Seoktanju, alcohol content was the highest in the treated Nuruk-A group. Volatile acid value was the highest with 132.6~263.7 ppm at the 3 day after first mashing day but as the fermentation time goes on, it was reduced sharply by 5.25~5.94 ppm. Sensory evaluation was performed with 5 point scale, the Seoktanju using Nuruk-D was presented by 4 point, while Nuruk-A was presented lowest by 2.77 point on overall acceptability.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Changes of the Volatile Basic Nitrogen and Free Amino Acids according to the Fermentation of Low Salt Fermented Squid (저염 오징어 젓갈의 숙성에 따른 휘발성염기질소 및 유리 아미노산의 변화)

  • 오성천;조정순;남혜영
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.173-181
    • /
    • 2000
  • To understand the influences of NaCl concentration and fermentation temperature on the ripening process of low salt fermented squids, squid with 5%, 7% and 9% salt were fermented at 10$\^{C}$ and 20$\^{C}$. The result of the changes of volatile basic nitrogen and free amino acids during the fermentation of squids are as follows. As a result of the observations on the changes of physicochemical components during the fermentation process of the low-salted squids, all the pH, VBN and NH$_2$-N were increased and therefore the fermentation was promoted. Considering the changes of net components according to the fermentation, ATP (Adenosine triphosphate) and ADP (Adenosine diphosphate) lost and could not be detected among the nucleotides and their related compounds. Besides, AMP (Adenosine monophosphate) existed only in the initial stage and inosine, hypoxanthine were the main components of nucleotides and their related compounds. Nonvolatile organic acids are mainly lactic acid, acetic acid and also they occupied more than 80%. Seeing the composition of free amino acid, the major amino acids are proline, arginine, methionine, alanine and glutamic acid.

  • PDF