• 제목/요약/키워드: fermentation profile

검색결과 136건 처리시간 0.032초

Effect of Feeding Bypass Protein on Rumen Fermentation Profile of Crossbred Cows

  • Kalbande, V.H.;Thomas, C.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권7호
    • /
    • pp.974-978
    • /
    • 2001
  • The effect of three varying ratios (high, medium and low) of Rumen Degradable Protein (RDP) to Undegradable Dietary Protein (UDP) of 37:63, 52:48 and 70:30 in iso-nitrogenous and iso-caloric concentrate mixtures on rumen fermentation profile was studied using rumen fistulated Jersey crossbred cows. Rumen pH and ammonia nitrogen concentration were found to be lower with a concentrate mixture containing a higher UDP level of 63.38% when compared with those having medium and low UDP levels of 47.55 and 29.75%, respectively, at all post feeding intervals. Total volatile fatty acid concentration as well as concentrations of individual fatty acids viz., acetate, propionate and butyrate were also found higher in animals fed concentrate mixture with the highest UDP level.

발효시간에 따른 증편의 기계적 및 관능적 특성 (Mechanical and Sensory Characteristics of Jeungpyun Prepared with Different Fermentation Time)

  • 윤숙자
    • 한국식품조리과학회지
    • /
    • 제19권4호
    • /
    • pp.423-428
    • /
    • 2003
  • 발효시간에 따른 증편의 기계적, 관능적 품질특성을 저장기간 동안 평가하였다. 증편의 높이와 부피는 1차 발효 240분, 2차 발효 60분, 3차 발효 30분을 한 E 시료가 가장 높아 발효가 잘 된 것으로 나타났고 물성특성의 경우 전통적으로 제조한 시료보다 발효시간을 단축시킨 시료들이 유의적으로 견고성이 낮았고 저장기간의 증가에 따라 그 값이 증가하여 증편이 단단하게 경화되는 것으로 나타났다. 기계적 색도의 경우 명도는 E 시료가 가장 높았으며 저장에 따라 감소하는 것으로 나타났다. 관능적 품질의 경우 부풀기의 정도, 부드러운 정도, 촉촉한 정도는 E 시료가 가장 높게 나왔다. 증편의 높이, 부피, 명도, 부풀기의 정도, 부드러운 정도, 촉촉한 정도에서 가장 높은 수치를 나타낸 E 시료가 가장 바람직한 것으로 나타났다.

PCR-DGGE를 이용한 막걸리발효에서 미생물 다양성 분석 (Analysis of Microbial Diversity in Makgeolli Fermentation Using PCR-DGGE)

  • 권승직;안태영;손재학
    • 생명과학회지
    • /
    • 제22권2호
    • /
    • pp.232-238
    • /
    • 2012
  • 금정산성 막걸리$^{(R)}$는 전통적인 수제누룩과 쌀로부터 발효된 한국의 전통적인 술이다. 본 연구에서는 막걸리 발효기간 동안 세균과 진균의 다양성을 특성화하기 위해 16S와 28S rRNA 유전자를 목적으로 하는 PCRDenaturing Gradient Gel Electrophoresis (PCR-DGGE) 분석을 수행하였다. 막걸리 발효기간 동안 PCR-DGGE profile에서 검출된 세균은 16S rRNA 유전자 서열에 기초한 동정결과 Lactobacillus spp. (L. curvatus, L. kisonensis, L. plantarum, L. sakei 및 L. gasseri), Pediococcus spp. (P. acidilactici, P. parvulus, P. agglomerans및 P. pentosaceus), Pantoea spp. (P. agglomerans 및 P. ananatis) 그리고 Citrobacter freundii로 총 12종이었으며, 배양2일 이후 L. curvatus가 주된 우점 종을 형성하였다. 반면 PCR-DGGE profile에서 검출된 진균은 28S rRNA 유전자 서열에 기초한 동정결과 Pichia kudriavzevii, Saccharomyces cerevisiae, Asidia idahoensis, Kluyveromyces marxianus, Saccharomycopsis fibuligera 및 Torulaspora delbrueckii로 6종이었으며 주된 우점 진균은 배양0일에서 2일에 P. kudriavzevii에서 배양 3일에서 6일에 S. cerevisiae로 전환되었다. 결과적으로 PCR-DGGE분석은 막걸리발효기간 동안 미생물의 구조와 다양성을 이해하는 데 유용한 도구임을 보여주었다.

Caecal Fermentation, Blood Biochemical Profile and Histopathological Changes in Broiler Rabbits Fed Graded Levels of Neem (Azadirachta indica) Seed Kernel Cake

  • Vasanthakumar, P.;Sharma, K.;Sastry, V.R.B.;Sharma, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권1호
    • /
    • pp.30-34
    • /
    • 2001
  • The expediency of promoting rabbit production on underutilized by-product feedstuffs prompted the current investigation of caecal fermentation pattern, blood biochemical profile and histopathological changes of vital organs in 48 broiler rabbits fed diets containing 0, 5, 10 and 20% level of neem seed kernal cake (NSKC) for 6 weeks and subsequently sacrificed. The NSKC incorporation in the diet did not exert any adverse effect on caecal fermentation although the weight of caecum and its contents was significantly (p<0.01; p<0.05) lower in rabbits fed the diet containing 20% NSKC. Except for blood glucose concentration, none of the blood biochemical constituents (serum urea nitrogen, creatinine, total protein, haemoglobin) and the activities of different enzymes (alanine aminotransferase, asparatate aminotransferase, alkaline phosphatase) varied significantly due to NSKC feeding. A histopathological examination of the vital organs (liver, kidney, heart, spleen, lungs, intestine and stomach) revealed a variable degree of villus atrophy in the intestine and degenerative changes in the liver and tubular epithelium of kidney in some rabbits when NSKC was fed at levels above 10%.

쌀코지가 도루묵(Arctoscopus japonicus) 식해의 발효특성에 미치는 영향 (Effects of Rice Koji on the Fermentation Characteristics of the Sik-hae from Sailfin Sandfish Arctoscopus japonicus)

  • 정민정;남종웅;한아람;김병목;전준영;김광우;이미향;정인학
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.808-816
    • /
    • 2022
  • This study was conducted with a view toward enhancing the industrial utilization of a male sailfin sandfish Arctoscopus japonicus based on its application in the preparation of Sik-hae, a Korean traditional fermented fishery product prepared using hard-boiled rice and enzymatic malt sprouts. As an alternative to rice and malt sprouts, we evaluated the utility of rice Koji for Sik-hae fermentation by investigating the physicochemical changes that occur during fermentation. The sailfin sand fish Sik-hae fermented with 10% or 20% rice Koji was found to show similar fermentation characteristics to the control fermentation with 20% hard-boiled rice and 4% malt sprouts, with respect to acid production, texture profile, and the softening of bones during the entire fermentation period. In particular, compared with the control, the addition of 10% rice Koji reduced the dehydration of Sik-hae and increased the content of free amino acids, which contributed to preventing a marked reduction in pH during fermentation. Accordingly, 10% rice Koji is proposed as a viable alternative enzymatic agent for the preparation of Sik-hae, which can contribute enhancing the desired properties of this traditional food product.

Effects of Feeding Extruded Soybean, Ground Canola Seed and Whole Cottonseed on Ruminal Fermentation, Performance and Milk Fatty Acid Profile in Early Lactation Dairy Cows

  • Chen, P.;Ji, P.;Li, Shengli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.204-213
    • /
    • 2008
  • Four ruminally cannulated Holstein cows averaging 43 days in milk (DIM) were used in a $4{\times}4$ Latin square to determine the effect of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation and milk fatty acid profile. One hundred and twenty lactating Holstein cows, 58 (${\pm}31$) DIM, were assigned to four treatments in a completely randomized block design to study the effects of the three types of oilseeds on production parameters and milk fatty acid profile. The four diets were a control diet (CON) and three diets in which 10% extruded soybean (ESB), 5% ground canola seed (GCS) and 10% whole cottonseed (WCS) were included, respectively. Diets consisted of concentrate mix, corn silage and Chinese wild rye and were balanced to similar concentrations of CP, NDF and ADF. Ruminal fermentation results showed that ruminal fermentation parameters, dry matter intake and milk yield were not significantly affected by treatments. However, compared with the control, feeding cows with the three oilseed diets reduced C14:0 and C16:0 and elevated C18:0 and C18:1 concentrations in milk, and feeding ESB increased C18:2 and cis9, trans11 conjugated linoleic acid (CLA). Production results showed that feeding ESB tended to increase actual milk yield (30.85 kg/d vs. 29.29 kg/d) and significantly decreased milk fat percentage (3.53% vs. 4.06%) compared with CON. Milk protein (3.41%) and solid non-fat (13.27%) from cows fed WCS were significantly higher than from cows fed CON (3.24% and 12.63%, respectively). Milk urea N concentrations from cows fed the ESB (164.12 mg/L) and GCS (169.91 mg/L) were higher than cows fed CON (132.31 mg/L). However, intake of DM, 4% fat corrected milk, energy corrected milk, milk fat and protein yields, milk lactose percentage and yield, somatic cell count and body condition score were not affected by different treatments. The proportion of medium-chain fatty acid with 14 to 16 C units in milk was greatly decreased in cows fed ESB, GCS and WCS. Feeding ESB increased the concentration in milk of C18:1, C18:2, C18:3 and cis9, trans11-CLA content by 16.67%, 37.36%, 95.24%, 72.22%, respectively, feeding GCS improved C18:0 and C18:1 by 17.41% and 33.28%, respectively, and feeding WCS increased C18:0 by 31.01% compared with feeding CON. Both ruminal fermentation and production trial results indicated that supplementation of extruded soybean, ground canola seed and whole cottonseed could elevate the desirable poly- and monounsaturated fatty acid and decrease the medium chain fatty acid and saturated fatty acid content of milk fat without negative effects on ruminal fermentation and lactation performance.

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.

Effects of Starter Candidates and NaCl on the Production of Volatile Compounds during Soybean Fermentation

  • Jeong, Do-Won;Lee, Hyundong;Jeong, Keuncheol;Kim, Cheong-Tae;Shim, Sun-Taek;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.191-199
    • /
    • 2019
  • We inoculated different combinations of three starter candidates, Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compound production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) nearly reached their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentrations in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed cultures of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.

Acetone-Butanol-Ethanol (ABE) Production in Fermentation of Enzymatically Hydrolyzed Cassava Flour by Clostridium beijerinckii BA101 and Solvent Separation

  • Lepiz-Aguilar, Leonardo;Rodriguez-Rodriguez, Carlos E.;Arias, Maria Laura;Lutz, Giselle
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1092-1098
    • /
    • 2013
  • Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, $40^{\circ}C$, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.