• Title/Summary/Keyword: fermentation products

Search Result 826, Processing Time 0.025 seconds

Characteristics of Fermented Wood Chips and Pig Manure (목질칩을 이용한 분뇨 발효 시 목질칩과 돈분뇨의 성분 변화)

  • Kim, Myung-Kil;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • After manufacturing fermentation system for degrading pig manure using environmentally friendly technique, performance of the system and characteristics of wood chips and pig manure fermented in the system were analyzed. Results from this study shows that proper fermentation temperature($55{\sim}60^{\circ}C$) reached 3days after the system started and degradation rate, which expresses fermentation performance of system, was $180{\iota}$/day. Even as progressing the fermentation of wood chips and pig manure mixture, the amount of extractives drawn out by alkali, and alcohol-benzene and lignin content was not varied. However, ash content in wood was increased. The inorganic compounds in pig manure seem to be transferred into wood chip. On the other hand holocellulose contents in wood were decreased a little. Holocellulose seems to be consumed as the second carbon source in fermentation process. Results through analysis of inorganic- and heavy metal elements contents in wood chips and pig manure fermented in long term process shows that inorganic elements($Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+$ etc.) contents were increased with fermentation time and heavy metal elements(Cd, As, Cu etc.) which cause environmental pollution were not detected. Number of microorganisms including bacteria, actinomycetes, and fungi, the number of C.F.U(Colony Forming Unit) was increased while temperature in fermentation system was abruptly increased.

  • PDF

Comparative Microbiome Analysis of and Microbial Biomarker Discovery in Two Different Fermented Soy Products, Doenjang and Ganjang, Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 된장과 간장의 미생물 분포 및 바이오마커 분석)

  • Ha, Gwangsu;Jeong, Ho Jin;Noh, Yunjeong;Kim, JinWon;Jeong, Su-Ji;Jeong, Do-Youn;Yan, Hee-Jong
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.803-811
    • /
    • 2022
  • Despite the importance of traditional Korean fermented foods, little is known about the microbial communities and diversity of fermented soy products. To gain insight into the unexplored microbial communities of both Doenjang (DJ) and Ganjang (GJ) that may contribute to the fermentation in Korean traditional foods, we carried out next-generation sequencing (NGS) based on the V3-V4 region of 16S rDNA gene analysis. The alpha diversity analysis results revealed that both the Shannon and Simpson diversity indices were significantly different between the two groups, whereas the richness indices, including ACE, CHAO, and Jackknife, were not significant. Firmicutes were the most dominant phylum in both groups, but several taxa were found to be more abundant in DJ than in GJ. The proportions of Bacillus, Kroppenstedtia, Clostridium, and Pseudomonas and most halophiles and halotolerant bacteria, such as Tetragenococcus, Chromohalobacter, Lentibacillus, and Psychrobacter, were lower in DJ than in GJ. Linear discriminant effect size (LEfSe) analysis was carried out to discover discriminative functional biomarkers. Biomarker discovery results showed that Bacillus and Tetragenococcus were identified as the most important features for the classification of subjects to DJ and GJ. Paired-permutational multivariate analysis of variance (PERMANOVA) further revealed that the bacterial community structure between the two groups was statistically different (p=0.001).

Selecting and evaluating microorganism strains to prepare low-salt doenjang for flavoring via the fermentation of rice and soybeans (쌀 및 콩 발효 균주선발과 이를 적용한 조미용 저염된장의 평가)

  • Jo, Seung Wha;Yim, Eun Jung;Kang, Hyeon Jin;Park, Seul Ki;Jeong, Do Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.103-108
    • /
    • 2022
  • This study investigated the strains and fermentation characteristics of used to ferment a mixture of rice and soybeans to manufacture low-salt doenjang for flavoring. The soybean and rice mixture was fermented using three selected strains of Aapergillus oryzae and Bacillus sp. The changes in quality of the fermented products were found to be dependent on the aging period. Therefore, the strain and a suitable aging period were seleted based on the increases in AN, total sugar, and reducing sugar. The fermented products were prepared and mixed, using the selected or commercially available strains (the sample and control, respectively), to create low-salt doenjang. Following this, their characteristics were compared. The sample had a higher content of taste-related ingredients(free amino acid, nucleic acid-related substances) than the control. Using the selected strain to ferment a rice and soybean mixture will thus be expected to enhance the flavor of industrially produced seasoned doenjang.

Alcohol Fermentation Characteristics of the Korean Native Mulberry (Morus spp.)

  • Kim, Ok-Mi;Woo, Seung-Mi;Park, Yong-Kon;Jeong, Yong-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.166-170
    • /
    • 2006
  • This study was carried out to investigate the fermentation characteristics and optimum conditions for alcohol fermentation of the Korean native mulberry. The yeast strains of S. kluyveri DJ97, La parisienne (Saccharomyces cerevisiae, Netherlands) and Enoferm (Saccharomyces cerevisiae, Denmark) produced higher alcohol concentrations than other strains, and further study was therefore performed with these three species. The optimum additional water content for maximizing alcohol concentration was 250% (v/w). The alcohol concentrations were rapidly increased in the first 4 days under the optimum conditions and reached 13.8% for S. kluyveri DJ97, 14.0% for La parisienne and 14.0% for Enoferm, respectively. Residual sugar concentration was decreased steadily from the beginning of fermentation until 5 days, after which it maintained a constant level. The pH was decreased steadily in the log phase during further maturation. However, the pH underwent a slight decrease after 4 days and then was stabilized during further maturation. Methanol concentrations for the three species used were analyzed after 60 days maturation and were lower than the levels regulated by the food standard. Fusel oils such as n-propanol, iso-butanol, and iso-amyl-alcohol were produced as by-products with the highest production from Enoferm and the lowest from S. kluyveri DJ97.

Coffee Husk By-Product as Novel Ingredients for Cascara Kombucha Production

  • Bao Xuyen Nguyen Le;Thach Phan Van;Quang Khai Phan;Gia Bao Pham;Hoa Pham Quang;Anh Duy Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.673-680
    • /
    • 2024
  • Kombucha, a fermented beverage, is gaining popularity due to its numerous beneficial health effects. Various substrates such as herbs, fruits, flowers, and vegetables, have been used for kombucha fermentation in order to enhance the flavor, aroma, and nutritional composition. This study aims to investigate the potential suitability of cascara as a novel ingredient for kombucha production. Our findings suggested that cascara is a suitable substrate for kombucha production. Fermentation elevated the total phenolic and flavonoid content in cascara, which enhanced the antioxidant, antibacterial, and prebiotic characteristics of the product. Furthermore, the accumulation of acetic acid-induced the pH lowering reached 2.7 after 14 days of fermentation, which achieved the microbiological safety of the product. Moreover, 14 days of fermentation resulted in a balanced amalgamation of acidity, sweetness, and fragrance according to sensory evaluation. Our findings not only highlight the potential of cascara kombucha as a novel substrate for kombucha production but also contribute to repurposing coffee by-products, promoting environmentally friendly and sustainable agricultural development.

Influence of different NaOH pretreatment concentrations on saccharification and fermentation for bioethanol production from rice straw and rice husk (natural and powder)

  • Yeasmin, Shabina;Kim, Chul-Hawn;Lee, J.Y.;Sheikh, M.I.;Park, H.J.;Kim, S.H.;Kim, G.C.;Kim, J.W
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.101-110
    • /
    • 2011
  • The experiment was conducted to evaluate the different NaOH pretreatment concentrations (0.25%, 0.50%, 0.75%, and 1.00%) on enzymatic saccharification (with cellulase, and ${\beta}$-glucosidase) and fermentation (by Saccharomyces cerevisiaeKCCM 11304) for bioethanol production from rice straw and rice husk. Pretreatment of rice straw and rice husk were conducted under both natural and powder state to observe the potentiality of the biomass condition (natural and powder state). In this study, glucose and ethanol production were increased with the increase of NaOH percentage for both rice straw and rice husk (natural and powder state). For rice straw, the highest amount of glucose was obtained in 1.00% NaOH pretreatment (0.81 g $g^{-1}$ in a natural, and 0.63 g $g^{-1}$ in a powder state pretreatment). Similarly, for rice husk, the highest amount of glucose was obtained in 1.00% NaOH pretreatment (0.47 g $g^{-1}$ in a natural, and 0.46 g $g^{-1}$ in a powder state pretreatment). However, 0.75% NaOH pretreatment resulted in glucose yield near about 1.00% NaOH pretreatment for both rice straw and rice husk (natural and powder state). On the other hand, for rice straw, the highest amount of ethanol was obtained in 1.00% NaOH pretreatment (0.36 g $g^{-1}$ in a natural, and 0.31 g $g^{-1}$ in a powder state pretreatment). In addition, for rice husk, the highest amount of ethanol was also obtained in 1.00% NaOH pretreatment (0.24 g $g^{-1}$ in a natural, and 0.23 g $g^{-1}$ in a powder state pretreatment). Moreover, 0.75% NaOH pretreatment resulted in ethanol yield near about 1.00% NaOH pretreatment for both rice straw and rice husk (natural and powder state). It was confirmed that higher amount of NaOH use is cost effective. Moreover, higher amount of glucose and ethanol was observed when powder was prepared after pretreatment. So 0.75% NaOH pretreatment in a natural state is supposed to be suitable for enzymatic saccharification and fermentation for bioethanol production.

  • PDF

Antioxidant Activity of Kelp Saccharina japonica Extract Fermented by Probiotic Lactic Acid Bacteria (Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성)

  • Ryu, Dae-Gyu;Park, Seul-Ki;Kang, Min-Gyun;Jeong, Min-Chul;Jo, Du-Min;Jang, Yu-Mi;Jeong, Hee-Jin;Lee, Do-Ha;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • The objective of this study was to investigate the effect of lactic acid bacteria (LAB) fermentation on the antioxidant activity of kelp Saccharina japonica water extract. Three LAB strains that had exhibited superior antioxidant activity in a previous study were selected for the kelp fermentation starter. The antioxidant activity of the fermented extracts was analyzed during fermentation. After 48 h of fermentation, the extract-fermented Lactobacillus plantarum D-11 strains showed the highest antioxidant activity in terms of DPPH (2,2-diphenyl-2-picryl hydrazyl) radical scavenging, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging, oxygen radical absorbance capacity (ORAC) and fluorescence recovery after photobleaching (FRAP) assay. Furthermore, the analysis of total phenolic and flavonoid contents revealed that the enhanced antioxidant activity was mainly due to the increased antioxidant content from fermentation. Thus, this study suggests that probiotic LAB fermentation is an attractive approach for the development of various kelp fermentation products.

Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients

  • Shim, S.B.;Verdonk, J.M.A.J.;Pellikaan, W.F.;Verstegen, W.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1444-1452
    • /
    • 2007
  • An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest $NH_3$, pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.

Quality Characteristics of Soybean Paste Added with Krill (크릴이 첨가된 된장의 품질 특성)

  • Kim, Ji-Sang;Moon, Gap-Soon;Lee, Young-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.5
    • /
    • pp.776-782
    • /
    • 2009
  • This study was conducted to develop functional soybean paste with krill (Euphausiacea) as compared to a conventional soybean paste (S1). Soybean containing 10%, 20% and 30% (w/w) krill (S2~S4, respectively) was prepared and quality characteristics (moisture, crude fat, crude protein, ash, reducing sugar, pH, titratable acidity, total acidity and buffering power) were assessed during fermentation for 150 days. As well, antioxidative activities of krill soybean paste were compared to those of control soybean paste based on total phenolic compound content and free radical scavenging activity, including the 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenging activity and the thiobarbituric acid value (TBA value). The moisture content of all samples decreased to 41.91~53.47% during fermentation, while the crude fat increased to 1.98~5.21% with increasing addition of krill. Additionally, crude protein increased slightly to 8.24~14.08% with increasing addition of krill after 120 days of fermentation. Ash content was 15.96~18.92%. The reducing sugar content of S2, S3 and S4 was higher than those of S1 with increasing length of fermentation. S2, S3, and S4 displayed progressive decreases in pH and progressive increases in titratable acidity compared to S1. The total acidity of all samples was increased, while the buffering power was decreased with increasing fermentation. Especially, the buffering power of S1 was lower than that of S2, S3 and S4. DPPH radical scavenging activity of lipophilic extracts from S2, S3 and S4 was slightly higher than those of S1. However, the radical scavenging activity of hydrophilic extracts from all samples had similar tendencies, regardless of the krill content or fermentation period. Total phenolics increased with increasing fermentation time and TBA value increased with increasing fermentation time and krill content.

  • PDF

Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid (옥살산 전처리 옥수숫대를 이용한 동시당화발효 최적 조건 탐색)

  • Seo, Young-Jun;Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • In this study, we determined optimal conditions for simultaneous saccharification and fermentation (SSF) using corncob biomass pretreated with oxalic acid. The effect of SSF temperature ($25.8{\sim}34.2^{\circ}C$) and agitation speed (80~220 rpm) were significant at a 99% confidence level in its effect on ethanol production. The highest ethanol production was expected when SSF was performed at $30^{\circ}C$, 170 rpm (22.5 g/L). The ethanol production was improved by mixture of yeast extract (1.25 g/L) and urea (1.25 g/L) as nitrogen source. However, addition of trace metal components and vitamin for SSF was not affected in the ethanol production. Optimal concentration of $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$ for SSF was 1 g/L, 0.25 g/L respectively.