• Title/Summary/Keyword: fermentation optimization

Search Result 335, Processing Time 0.032 seconds

Bacillus licheniformis NS70으로부터 내열성 Alkaline Protease 생산을 위한 배지최적화

  • Koo, Ja-Hyup;Choi, In-Jae;Nam, Hee-Sop;Lee, Hyung-Jae;Shin, Zae-Ik;Oh, Tae-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.207-211
    • /
    • 1997
  • Media optimization for the production of thermostable protease specifically hydrolyzing defatted soybean meal (DSM) from Bacillus licheniformis NS70 was performed by two methods, one-at-a-time method and response surface methodology (RSM). The best carbon source and nitrogen source for the protease production were lactose and DSM, respectively. The maximum protease production estimated by RSM was 606 U/L at 1.11% lactose and 0.43% DSM, the value of which was nearly consistent to the experimental value of 599 U/L. Yeast extract suppressed the protease production. The medium pH was slightly increased at the beginning stage of fermentation, and it tended to decrease after 8 hours. The optimal pH for the protease production was 7.2 in the batch fermentation.

  • PDF

Optimization of Culture Conditions and Bench-Scale Production of $_L$-Asparaginase by Submerged Fermentation of Aspergillus terreus MTCC 1782

  • Gurunathan, Baskar;Sahadevan, Renganathan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.923-929
    • /
    • 2012
  • Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental $_L$-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature $35^{\circ}C$, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of $_L$-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Composting of Organic Wastes by solid State Fermentation Reactor (Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효)

  • 홍운표;이신영
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Optimization of the Fermentation Period of Lightly Salted Oiji (Traditional Korean Cucumber Pickles) (저염 오이지의 최적 발효기간에 대한 연구)

  • Kim, Gumjung;Yang, Jiwon;Lee, Kyunghee
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.3
    • /
    • pp.353-360
    • /
    • 2019
  • To optimize the fermentation period of lightly salted Oiji, 3% salt was added to cucumbers that were fermented at $27{\pm}1^{\circ}C$ for 3, 4, 5, 6, or 7 days, after which their physical properties (moisture content, salinity, pH, acidity, hardness) and sensory characteristics (acceptance test, difference test) were evaluated. The moisture content was highest at day 6. Hardness slowly increased as fermentation time increased, but not significantly. The pH was highest after 3 days of fermentation, and tended to decrease as fermentation time increased, with the largest drop occurring between 4 and 5 days, and the lowest pH occurring between 6 and 7 days. Acidity was lowest after day 3 of fermentation and highest after day 7. Acidity tended to increase as fermentation period lengthened. The L-value tended to decrease as salt concentration increased. The a-value declined from day 3 to day 5, then increased significantly by day 7. The b-value was highest after 7 days, with a tendency to increase as the fermentation progressed. Acceptance test results were highest for taste and overall acceptance after 5 days of fermentation. The difference test showed that the optimal lightly salted Oiji fermentation period was approximately 5 days. These results indicate that lightly salted Oiji fermented for 5 days produced the highest acceptance.

Current Status of the Research in Fed Batch Culture as an Aspect of General Optimization Problems in Fermentation

  • Choi, Cha-Yong
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.242-242
    • /
    • 1979
  • The general efforts of applied research and development can be divided into product development, process development, process design, process equipment design, and operation The fed batch culture as one effort of theprocess development in fermentation industry has been practiced since the early times of human history. One particular industrial application with long history is in the cultivation of the baker's yeast where the glucose effect at relatively high glucose concentration is the general rule.

  • PDF

Optimization of recombinant E. coli fermentation through biological manipulation and engineering control

  • Kim, Jeong-Yoon
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.14-26
    • /
    • 1993
  • Optimizing protein production in recombinant E. coli strains involves manipulation of genetic and environmental factors. In designing a production system, attention must be paid to gene expression efficiency, culture conditions and bioreactor configuration. Although not much emphasis was given to the physiology of host strains in this review, an understanding of the relationship between the physiology of host cell growth and the overproduction of a cloned gene protein is of primary importance to the improvement of the recombinant fermentation processes. Sometimes it is desirable to make use of gene fusion systems, e.g. protein A, polypeptide, gutathione-S-transferase, or pneumococcal murein hydrolase fusion, to facilitate protein purification.

  • PDF