• Title/Summary/Keyword: fermentation methods

Search Result 691, Processing Time 0.032 seconds

Production of Lactic Acid from Cheese Whey by Repeated Batch and Continuous Cultures

  • Kim, Hyang-Ok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.319-323
    • /
    • 2005
  • This study is concerned with development of efficient culture methods for lactic acid fermentation of Lactobacillus sp. RKY2. The cell-recycle repeated batch fermentation using cheese whey and corn steep liquor as raw materials was tried in order to further enhance the productivity of lactic acid. In addition, fermentation efficiencies could be considerably enhanced by cell-recycle continuous culture. Through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 $g/L{\cdot}h,$ which corresponded to 6.2 times higher value than that of the batch fermentation. During the cell-recycle continuous fermentation, the last dry cell weight at the end of fermentation could be increased to 25.3 g/L.

  • PDF

Improvement of Kimchi Juice Fermentation by Combined method for Chinese Cabbage Waste Utilization (폐기물 활용을 위한 종합적 처리방법의 김치쥬스 발효 향상)

  • 전윤기;윤석권;김우정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.794-799
    • /
    • 1997
  • The effective fermentation methods of Kimchi juice for utilization of outer layer of Chinese cabbage, an waste of Kimchi industry were studied. The Kimchi juice prepared with brining and grinding the waste of Chinese cabbage and addition of spices was fermented at $25^{\circ}C$. Addition of 5$^{\circ}C$15% fermented Kimchi juice of pH 5.4 at initial stage and pH 4.4 at middle state resulted in a significant increase in fermentation rate and solid content after 12 hours of fermentation. The combined method of enzymatic hydrolysis(0.1% viscozyme) of the brined and ground cabbage and addition of 2.0% NaCl, 1.0% sucrose and 10% fermented juice of pH 5.4 first and 4.4 during fermentation, respectively resulted in more rapid fermentation. The solid concentration was 5 times higher than control at maximum point and acidic and total flavor intensity were also significantly high.

  • PDF

Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility

  • Jiao, Ting;Lei, Zhaomin;Wu, Jianping;Li, Fei;Casper, David P.;Wang, Jianfu;Jiao, Jianxin
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1776-1783
    • /
    • 2021
  • Objective: This project aimed to evaluate the effects of both different additives and filling methods on nutritive quality, fermentation profile, and in situ digestibility of whole plant corn silage. Methods: Whole plant corn forage harvested at 26.72% dry matter (DM) was chopped and treated with two filling methods, i) fill silos at one time (F1), ii) fill silos at three times (F3), packing samples into one/three silo capacity at the first day, another one/three capacity at the second day, then one/three at the third day, three replicates. For each replicate, samples were treated with three additives, i) control (CTRL, no additive), ii) Sila-Max (MAX, Ralco Nutrition Inc., Marshall, MN, USA), and iii) Sila-Mix (MIX, Ralco Nutrition Inc., USA). With three replicates of each secondary treatment, there were nine silos, 54 silos in total. Each silo had a packing density of 137.61 kg of DM/m3. All silos were weighed and stored in lab at ambient temperature. Results: After 60 d of ensiling, all items showed good silage fermentation under MAX filled one time or three times (p<0.01). Higher silage quality for all additives was obtained at filling one time than that filled three times (p<0.01). The highest DM and lowest DM loss rate (DMLR) occurred to MAX treatment at two filling methods (p<0.01); Digestibility of acid detergent fiber, neutral detergent fiber (NDF), and curde protein had the same results as silage quality (p<0.01). Yield of digestible DM and digestible NDF also showed higher value under MAX especially for filling one time (p<0.05). Conclusion: All corn silages showed good fermentation attributes (pH<4.0). The forage filled one time had higher silage quality than that filled three times (p<0.01). MAX with homofermentative lactic acid bacteria enhanced the lactic acid fermentation, silage quality and nutrient digestibility, and so improved the digestible nutrient yield.

Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector

  • Cho, Yong-Han;Lee, Hye-Jin;Lee, Jung-Eun;Kim, Soo-Jung;Park, Kyungmoon;Lee, Do Yup;Park, Yong-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2015
  • For the analysis of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation, simple and reproducible methods of extraction and derivatization were developed on the basis of gas chromatography with flame ionization detector (GC-FID) instead of mass spectrometry. In the derivatization step, change of the ratio of pyridine to MSTFA from 1:3 to 9:1 resulted in higher peak intensity (p = 0.021) and reproducibility (0.6%CV) when analyzing 32 g/l ricinoleic acid (RA). Extraction of RA and ω-hydroxyundec-9-enoic acid with water containing 100 mM Tween 80 showed 90.4-99.9% relative extraction efficiency and 2-7%CV compared with those with hydrophobic ethyl acetate. In conclusion, reduction of the pyridine content and change of the extraction solvent to water with Tween 80 provided compatible derivatization and extraction methods to GC-FID-based analysis of longchain carboxylic acids.

Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus

  • Wu, Chien-Hui;Chien, Wei-Chen;Chou, Han-Kai;Yang, Jungwoo;Lin, Hong-Ting Victor
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1245-1253
    • /
    • 2014
  • One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of $81.1{\pm}5%$ was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, $121^{\circ}C$, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.

Effects of Salting Methods on the Sensory and Microbiological Properties of Kakdugi (절임방법에 따른 깍두기의 관능적 및 미생물학적 특성)

  • 김나영;장명숙
    • Korean journal of food and cookery science
    • /
    • v.16 no.1
    • /
    • pp.75-83
    • /
    • 2000
  • The effects of salting methods on sensory and microbiological properties of Kakdugi were evaluated during fermentation at 10$\^{C}$ for up to 52 days. Kakdugi samples were prepared by 4 different salting methods at the final salt concentration about 1.5%, which was appropriate for organoleptic quality. The salting methods for radish cubes(2cm size) of Kakdugi included; 1) Treatment S-1: spraying dry salt uniformly onto the radish cubes, at the concentration of about 1.5%(w/w) and cured for 1 hr, 2) Treatment S-5: spraying dry salt uniformly onto the radish cubes, at the concentration of about 1.2%(w/w) and cured for 5 hr, 3) Treatment B-1: brining radish cubes in a 8.5%(w/v) salt solution and cured for 1 hr, 4) Treatment B-5: brining radish cubes in a 4.0%(w/v) salt solution and cured for 5 hr. During the early stage of fermentation, sensory test showed higher scores in the overall acceptability of Kakdugi prepared with salting methods S-1 and S-5 than those with B-1 and B-5. However, the trend of acceptability has been reversed by the treatments B-1 and, more notably, by B-5 at the later stage of fermentation. The counts of lactic acid bacteria increased remarkably and then decreased gradually after the optimum ripening period. The major lactic acid bacteria isolated and identified from Kakdugi were Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus.

  • PDF

Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1913-1922
    • /
    • 2018
  • Objective: To find out ways of improving fermentation quality of silage, the comparative analysis of fermentation characteristics and in vitro digestibility of tropical grasses silage applied with cellulases produced from Acremonium or Tricoderma species were studied in Thailand. Methods: Fresh and wilted Guinea grass and Napier grass silages were prepared with cellulases from Acremonium (AC) or Trichoderma (TC) at 0.0025%, 0.005%, and 0.01% on a fresh matter (FM), and their fermentation quality, chemical composition and in vitro digestibility were analyzed. Results: All silages of fresh Napier grass were good quality with lower pH, butyric acid, and ammonia nitrogen, but higher lactic acid content than wilted Napier grass and Guinea grass silage. Silages treated with AC 0.01% had the best result in terms of fermentation quality. They also had higher in vitro dry matter digestibility and in vitro organic matter digestibility at 6 and 48 h after incubation than other silages. Silages treated with lower levels at 0.005% or 0.0025% of AC and all levels of TC did not improve silage fermentation. Conclusion: The AC could improve silage fermentation and in vitro degradation of Guinea grass and Napier grass silages, and the suitable addition ration is 0.01% (73.5 U) of FM for tropical silage preparation.

Physicochemical Properties of Kefir Manufactured by a Two-Step Fermentation

  • Yoo, Sung-Ho;Seong, Ki-Seung;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.744-751
    • /
    • 2013
  • The objective of this study was to assess the physicochemical and sensory changes of a kefir manufactured by a two-step fermentation (MTY, $1^{st}$ step: $37^{\circ}C$ for 9 h; $2^{nd}$ step: $24^{\circ}C$ for 15 h) and compare it with kefirs produced by two conventional methods (GTY, fermentation at $37^{\circ}C$ for 24 h; KEY, $22^{\circ}C$ for 24 h). Rapid changes in pH and titratable acidity (TA) were observed in samples from all three manufacturing methods during fermentation process and storage period. Lactic acid bacteria (LAB) counts of MTY increased gradually up to 12 h of fermentation, reaching 9.28 Log CFU/mL, with maximum value observed in this experiment of 9.48 Log CFU/mL. The LAB counts of all samples decreased significantly during storage. The highest viscosity was observed for MTY (1750-1771 cPs), compared with the lowest viscosity observed for KEY (1250-1277 cPs). The viscosity of all samples increased slightly during storage (1250-1805 cPs, p<0.05), as well as carbon dioxide content (0.01-1.36%, p<0.05), except for GTY. The most significant increase in alcohol concentration during storage period was seen in MTY from 0.01% to 1.36% (p<0.05). MTY scored significantly higher in most items of the sensory analysis, indicating that the product manufactured by the two-step fermentation method is more acceptable compared with conventionally produced kefirs.

Antioxidant Activity and Component Change of Steaming-Drying and Fermented Gastrodiae Rhizoma (증포 천마 발효물의 항산화 활성 및 성분변화)

  • Doh, Eun-Soo;Yoo, Ji-Hyun;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives : The objective of this study is to evaluate antioxidant activity and the main component content change of steaming-drying fermented Gastrodiae rhizoma extract. Methods : The antioxidant activities were determined for total polyphenol, flavonoid contents, SOD-like activity, electron donating activity, nitrite scavenging ability and major functional components(gastrodin and 4-hydroxybenzyl alcohol content) were also measured. Results : The polyphenol content of fermented Gastrodiae rhizoma by S. cerevisiae were higher than those of fermented Gastrodiae rhizoma by A. oryzae, and when the fermentation period is extended. SOD like activity of fermented Gastrodiae rhizoma showed to be increased by fermentation with S. cerevisiae than fermentation by A. oryzae. Electron donating activity of fermented Gastrodiae rhizoma were increased at almost parallel level as vitamin C, by fermentation. Notably, fermentation by A. oryzae was moderately better than fermentation by S. cerevisiae. Flavonoid content of Gastrodiae rhizoma showed to increasing by fermentation, particularly fermentation by S. cerevisiae was proven to be more effective than by A. oryzae. The more steaming-drying or increased period of fermentation would be resulted in more gastrodin contents but under the same conditions, 4-hydroxybenzyl alcohol content of fermentation by A. oryzae in case of steaming and drying 1 time and 3 time was higher than control. Conclusions : These results has strongly hint the possible applicability of fermentation might be effective to improve the diverse biological activities of Gastrodiae rhizoma and may further supports to develop a functional food materials.

Fermentation of Pentose and Hexose Derived from Cellulosic Food Wastes by Mixed Yeast (공기 주입 방법에 따른 셀룰로오스계 음식물류 폐기물 유래의 오탄당과 육탄당의 동시발효)

  • Jeong, Seung-Mi;Kim, Yong-Jin
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • It is indispensable to increase the conversion rate of a reducing sugars such as pentose and hexose derived from cellulosic wastes for a highly efficient bioethanol fermentation from food wastes. The saccharification liquid from cellulosic substrates such as vegetable food wastes contained lots of hexose like glucose and pentose like xylose. Since Saccharomyces-based yeasts could not convert xylose to bioethanol, Pichia stipitis which could directly ferment xylose to ethanol was chosen. After selecting Saccharomyces coreanus and P. stipitis, fermentation characteristics by mixture of two yeasts were investigated. As a result, it was verified the production of ethanol was enhanced by the co-fermentation, although there were somewhat differences between the fermentation characteristics by the aeration methods. Moreover, the consumption of pentose, hexose and disaccharide was obviously observed, and aeration in the process of fermentation seemed to stimulate the activity of P. stipitis.