Browse > Article
http://dx.doi.org/10.4014/jmb.1402.02038

Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus  

Wu, Chien-Hui (Department of Seafood Science, National Kaohsiung Marine University)
Chien, Wei-Chen (Department of Food Science, National Taiwan Ocean University)
Chou, Han-Kai (Department of Food Science, National Taiwan Ocean University)
Yang, Jungwoo (School of Life Science & Biotechnology for BK21 Plus, Department of Biotechnology, Korea University)
Lin, Hong-Ting Victor (Department of Food Science, National Taiwan Ocean University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.9, 2014 , pp. 1245-1253 More about this Journal
Abstract
One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of $81.1{\pm}5%$ was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, $121^{\circ}C$, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.
Keywords
Biothanol; fermentation; Pterocladiella capillacea; Kluyveromyces marxianus; acid saccharification; electrodialysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374.   DOI   ScienceOn
2 John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.   DOI   ScienceOn
3 Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6.
4 Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.   DOI   ScienceOn
5 Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345-352.   DOI
6 AOAC. 1998. Offical Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.
7 Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102: 10868-10874.   DOI   ScienceOn
8 De Jong W, Marcotullio G. 2010. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int. J. Chem. React. Eng. 8.
9 Gonzalez-Siso MI, Freire-Picos MA, Ramil E, Gonzalez- Dominguez M, Torres AR, Cerdan ME. 2000. Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb. Technol. 26: 699-705.   DOI   ScienceOn
10 Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.   DOI   ScienceOn
11 Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.   DOI   ScienceOn
12 Jang SS, Shirai Y, Uchida M, Wakisaka M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
13 Martin C, Jonsson LJ. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395.   DOI   ScienceOn
14 Meinita MDN, Hong YK, Jeong GT. 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35: 123-128.   DOI
15 Nahak S, Nahak G, Pradhan I, Sahu RK. 2011. Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci. 1: 74-80.
16 Huang CH, Xu TW, Zhang YP, Xue YH, Chen GW. 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 288: 1-12.   DOI   ScienceOn
17 Jang JS, Cho Y, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18.   DOI
18 Jeong TS, Kim YS, Oh KK. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour. Technol. 102: 10529-10534.   DOI   ScienceOn
19 Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.   DOI   ScienceOn
20 Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S. 2008. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J. Biosci. Bioeng. 106: 128-133.   DOI   ScienceOn
21 Quemener B, Lahaye M. 1998. Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. Appl. Phycol. 10: 75-81.   DOI
22 Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90: 1573-1586.   DOI
23 Silva RO, dos Santos GMP, Nicolau LAD, Lucetti LT, Santana APM, Chaves LDS, et al. 2011. Sulfated-polysaccharide fraction from red algae Gracilaria caudata protects mice gut against ethanol-induced damage. Mar. Drugs 9: 2188-2200.   DOI
24 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510- 42618. National Renewable Energy Laboratory.
25 Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.   DOI   ScienceOn
26 Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98: 1947-1950.   DOI   ScienceOn