• Title/Summary/Keyword: fermentation liquid fertilizer

Search Result 48, Processing Time 0.023 seconds

The Survey of Actual Using Conditions of Farm-Made Liquid Fertilizers for Cultivating Environment-friendly Agricultural Products (친환경 농산물 재배를 위한 농가 자가제조 액비 사용실태)

  • An, Nan-Hee;Jo, Young-Sang;Jo, Jeong-Rae;Kim, Yong-Ki;Lee, Yeon;Jee, Hyeong-Jin;Lee, Sang-Min;Park, Kwang-Lai;Lee, Byung-Mo
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2012
  • We conducted a survey of actual using conditions of farm-made liquid fertilizers by investigating their formulation types, materials, making processes, using methods and various beneficial effects on 29 farms certified by National Agricultural Products Quality Management Service to produce environment-friendly agricultural products in 2009. Most of the materials used to make liquid fertilizers are those that can be easily obtained around the farms. Molasses or black sugar are added as an energy source of microorganism. And leaf mold, bacterial cultures supplied by agricultural extension centers of local governments, and cultures of native microorganisms were used as microbial sources for fermenting effective microorganisms. Types of the farm-made liquid fertilizers were fermented liquid fertilizers, fermented plant juices, amino acid liquid fertilizers, calcium-liquid fertilizers, and phosphoric acid liquid fertilizers. Effects of liquid fertilizers used by the farms were found to promote plant growth by supplying nutrition, to accelerate blooming and flower bud formation, to enhance the quality of agricultural products such as increase of sugar contents and improvement of storing conditions, to induce resistance against diseases and insect pests, and to cause endurance to high temperature stress. Chemical properties of the liquid fertilizers collected were analyzed. As a result, pH and EC range showed differences according to kinds of the liquid fertilizers. Amount of macro-nutrients, such as nitrogen and phosphoric acid, in most of the collected liquid fertilizers, was found to be low. Even though the liquid fertilizers were made from same materials, their contents was found to be different depending on the making process.

The Changes of Solid, Nitrogen and Phosphorus Concentrations in Pig Slurry Stored at Various Depth of Slurry Storage Tank (돼지분뇨슬러리의 액비조내 저장깊이별 고형물 및 질소, 인의 함량분포에 관한 연구)

  • Jeong, Kwang-Hwa;Chung, Eui-Soo;Park, Chi-Ho;Kwag, Jung-Hoon;Choi, Dong-Yoon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.161-168
    • /
    • 2006
  • This paper describes the changes of characteristics of pig slurry according to storing depth. Most of the substances containing pollutants, such as were Management of manure and wastewater from animal confinement facilities is a critical factor for pollution control. With proper treatment processing method in both solid and liquid forms, it can be used as a fertilizer and soil conditioner. In Korea, liquid-manure handling system is very popular because its treatment and application is easy and labor saving. In the storage tank treatment, the period of fermentation process and solids-liquid separation averages six months and the supernatant liquid is being used as a fertilizer. In this study, the changes in chemical characteristics of pig slurry at varying depths of the storage tank were investigated. Results showed that the pH value of the fermented pig slurry was > 7, while the major pollutants such as BOD, SS, N and P were highest in the bottom of the tank. Therefore, the above findings proved that varying depths in the storage tank can influence the concentration of pollutants of the fermented pig slurry.

  • PDF

Mono-granular Compound Fertilizer Acting Slow Release for the Crops Under Vinyl Mulching Cultivation -III. Effect of Newly Developed Compound Fertilizer on Sesame (비닐멀칭 작물재배용(作物栽培用) 지효성(遲效性) 전용복비(專用複肥) 개발(開發) -III. 참깨 전용복비(專用複肥)의 비효구명(肥效究明))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Seong, Ki-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.296-300
    • /
    • 1988
  • A trial product of monogranular compound fertilizer for sesame under vinyle mulching cultivations was manufactured using the principal sources of urea, diammonium phosphate and muriate of potash in combination with a filler of zeolite and a binder of liquid waste from glutamic acid fermentation. Two field experiments using transparent vinyl mulching for single-crop cultivation and black vinyl mulching for cultivation after wheat and barley cropping were carried out to evalute their effects on sesame and the results obtained were as follows. Plant height and stem diameter of the trial product in sesame plant were higher and better than those of NPK split application and NPK all basic application. As the yield of the trial product was higher and similar to the NPK application plots in transparent and black vinyl mulching treatment respectively, the one time basic application of a developed monogranular compound fertilizer for sesame was possible under vinyl mulching cultivation.

  • PDF

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

Application Amount of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용적량 구명)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Lee, Sang-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • This study was carried out to evaluate the proper application amount of anaerobic digestion waste water and the environmental influence on rice. The waste water collected after methane fermentation process of pig manure was used as a liquid manure. Liquid manure 100%+chemical fertilizer 30%(LM 100%+CF 30) treatment was the most favorable at all growth stages of rice. The LM 100%+CF 30% treatment was applied to 100% amount of liquid manure which was correspond to the same amount of nitrogen for the standard application amount on rice, with adding 30% amount of chemical fertilizer(urea) at tillering stage. The yields of rice in the treatments of 100%(LM 100%) and 150% amount(LM 150%) of liquid manure were similar or a little higher than NPK treatment but LM 100%+CF 30% treatment was less than the NPK treatment due to the increase of straw weight and plant lodging. In periodic changes of the $NH_4-N$ and $NO_3-N$ contents, the LM 70%+CF 30% treatment in paddy soil was the highest in all treatments. The NPK and the LM 100% treatments in irrigation water quality were higher than other treatments. In infiltration water quality, $NH_4-N$ content was leached out much in the LM 150% treatment and $NO_3-N$ content was in the LM 100%+CF 30% treatment. The proper application amount of anaerobic digestion waste water as a liquid manure must be to analyse the nitrogen content of the waste water and to apply the same amount of nitrogen for the standard application amount on rice.

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar (SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산)

  • Kim, Ho-Yong;Gwak, Ki-Seob;Kim, Hye-Yun;Ryu, Keun-Ok;Kim, Pan-Gi;Cho, Do-Hyun;Choi, Jin-Yong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.459-468
    • /
    • 2011
  • The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

A Study on Biomass Utilization Strategies of Hokkaido Prefecture in Japan (일본 북해도지역 바이오매스 이용에 관한 사례 연구)

  • Yook, Hye-Young;Lee, Myung-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.37-50
    • /
    • 2009
  • This study was carried out to investigate the integrated biomass strategies for utilization and application characteristics in Hokkaido prefecture, japan. From the results, to achieve a successful operation of biomass recycling facilities, it previously needs the effective byproduct supplying construction system for field demander as well as the advanced environmental technology introduction. Especially, the value-promotion recycling technology were requested as follows; (1) production of functional solid composting for protection soil acidification, (2) the addition of soil microorganism to the production of liquid fermentation fertilizer, (3) construction of diverse energy supply system, (4) mixed organic material fermentation process concerning on heavy metal concentration, (5) introduction of incentive garbage collection system for contaminants prevention.

Biogas Production from Anaerobic Co-digestion Using the Swine Manure and Organic Byproduct (돈분과 유기성 부산물을 혼합한 혐기소화에서 바이오가스 생산)

  • Kim, W.G.;Oh, I.H.;Yang, S.Y.;Lee, K.M.;Lee, S.I.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Animal manure is produced annually 43.7 million tonnes in Korea. Among them, about 85.6 % are used as compost or liquid fertilizer to the agricultural land. The animal manure can be effectively utilized by mixing with organic byproducts that result in generation of biogas from anaerobic co-digestion process. This study aimed to optimize the content of total solid materials (TS) and determine the effect of organic byproduct on the co-digestion process. Prior to the byproduct treatments, determination of proper content of TS was conducted by controlling at 5 or 10 %. For the byproduct treatments, swine manure without adding the byproduct was used for control treatment, and swine manure mixed with either corn silage or kitchen waste was used for other treatments. Volume of biomethane ($CH_4$) generated from digested materials was quantified before and after byproduct treatments. In result, a 1.4-fold higher biomethane, about 0.556 L/$L{\cdot}d$, was produced when the content of TS was controlled at 10 %, compared at 5 %, about 0.389 L/$L{\cdot}d$. When the swine manure was mixed with the corn silage or kitchen waste, a two-fold higher biomethane was produced, about 1.theand 1.0heL/$L{\cdot}d$, respectively, compared to the control treatment. Biogas production from organic dry matter (odm) was a3, 362eand 2h6 L/kg odm${\cdot}$d for control, corn silage, and kitchen waste treatment, respectively. The lower biogas production in the treatment of kitchen waste than that of corn silage is associated with its relatively high odm contents. The methane concentration during the whole process ranged from 40 at the beginning to 70 % at the end of process for both the control and kitchen waste treatments, and ranged from 52 to 70 % for the corn silage treatment. Hydrogen sulfide ($H_2S$) concentration ranged between 350 and 500 ppm. All the integrated results indicate that addition of organic byproduct into animal manure can double the generation of biogas from anaerobic fermentation process.