• Title/Summary/Keyword: fermentation kinetics

Search Result 76, Processing Time 0.028 seconds

Chemical Changes during Ensilage and In sacco Degradation of Two Tropical Grasses: Rhodesgrass and Guineagrass Treated with Cell Wall-degrading Enzymes

  • Zhu, Yu;Nishino, Naoki;Xusheng, Guo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.214-221
    • /
    • 2011
  • Effects of the cell wall-degrading enzymes derived from Acremonium cellulolyticus and Trichoderma viride on the silage fermentation and in sacco degradation of tropical grasses i.e. rhodesgrass (Chloris gayana Kunth. cv. Callide) and guineagrass (Panicum maximum Jacq. cv. Natsukaze) were investigated in laboratory-scale experiments. These two grasses were either treated with or without the enzymes before ensiling. Untreated rhodesgrass produced acetate fermentation silage (lactate, $13.0\;g\;kg^{-1}$ DM; acetate, $38.7\;g\;kg^{-1}$ DM) with high final pH value and $NH_3$-N content (5.84 and $215\;g\;kg^{-1}$ DM). Addition of enzymes significantly increased (p<0.01) the lactate production (lactate, 45.6; acetate, $34.0\;g\;kg-^{1}$ DM) and decreased (p<0.01) the pH and $NH_3$-N (4.80 and $154\;g\;kg^{-1}$ DM) in the ensiled forages when compared with the control silages. Untreated guineagrass was successfully preserved with a high lactate proportion (lactate, 45.5; acetate, $24.1\;g\;kg^{-1}$ DM), and the addition of enzymes further enhanced the desirable fermentation (lactate, $57.5\;g\;kg^{-1}$ DM; acetate, $19.4\;g\;kg^{-1}$ DM). The content of NDF was lowered (p<0.05) by enzymes in both silages, but the extent appeared greater in the enzyme-treated rhodesgrass (rhodesgrass, $48\;g\;kg^{-1}$ DM; guineagrass, $21\;g\;kg^{-1}$ DM). Changes in the kinetics of in sacco degradation showed that enzyme treatment increased (p<0.01) the rapidly degradable DM (rhodesgrass, 299 vs. $362\;g\;kg^{-1}$ DM; guineagrass, 324 vs. $343\;g\;kg^{-1}$ DM) but did not influence the potential degradation, lag time and degradation rate of DM and NDF in the two silages.

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H.;Triolo, J.M.;Cu, T.T.T.;Pedersen, L.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.864-873
    • /
    • 2013
  • In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

Kinetic Studies on Submerged Acetic Acid Fermentation of Acetobacter aceti (Acetobacter aceti균의 심부배양에 의한 초산발효의 동력학적 연구)

  • KIM Sang-Moo;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.301-306
    • /
    • 1992
  • In order to determine the optimal conditions for the process of acetic acid fermentation, the kinetics of Acetobacter aceti fermentation in submerged batch cultures were studied at different agitation speeds and air flow rates. The maximum cell concentration was noted after about 48 hr fermentation and the time course of Acetobactey aceti fermentation showed a distinct feature of growth-associated product formation. At agitation speeds 700, 500, and 300 rpm fixed on air flow rate 1 v/v/M, specific grow rates were $3.97\times10^{-2},\;3.82\times10^{-2},\;and\;2.04\times10^{-2\} \;hr^{-1}$, saturation constants were 61.4, 64.6, and 69.4mg/ml. and volumetric oxygen transfer coefficients were 0.9337, 0.4468, and 0.1701 $min^{-1},$ respectively. At air flow rates 1.25, 1.00, and 0.75 v/v/M fixed on agitation speed 500 rpm, specific growth rates were $3.90\times10^{-2},\;3.82\times10^{-2},\;and\;2.37\times10^{-2}\;hr^{-1}$, saturation constants were 63.4, 64.6, and 64.9 mg/ml, and volumetric oxygen transfer coefficient were 0.4923, 0.4468, and 0.3509 $min^{-1},$ respectively.

  • PDF

In vitro rumen fermentation kinetics, metabolite production, methane and substrate degradability of polyphenol rich plant leaves and their component complete feed blocks

  • Aderao, Ganesh N.;Sahoo, A.;Bhatt, R.S.;Kumawat, P.K.;Soni, Lalit
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.26.1-26.9
    • /
    • 2018
  • Background: This experiment aimed at assessing polyphenol-rich plant biomass to use in complete feed making for the feeding of ruminants. Methods: An in vitro ruminal evaluation of complete blocks (CFB) with (Acacia nilotica, Ziziphus nummularia leaves) and without (Vigna sinensis hay) polyphenol rich plant leaves was conducted by applying Menke's in vitro gas production (IVGP) technique. A total of six substrates, viz. three forages and three CFBs were subjected to in vitro ruminal fermentation in glass syringes to assess gas and methane production, substrate degradability, and rumen fermentation metabolites. Results: Total polyphenol content (g/Kg) was 163 in A. nilotica compared to 52.5 in Z. nummularia with a contrasting difference in tannin fractions, higher hydrolysable tannins (HT) in the former (140.1 vs 2.8) and higher condensed (CT) tannins in the later (28.3 vs 7.9). The potential gas production was lower with a higher lag phase (L) in CT containing Z. nummularia and the component feed block. A. nilotica alone and as a constituent of CFB produced higher total gas but with lower methane while the partitioning factor (PF) was higher in Z. nummularia and its CFB. Substrate digestibility (both DM and OM) was lower (P < 0.001) in Z. nummularia compared to other forages and CFBs. The fermentation metabolites showed a different pattern for forages and their CFBs. The forages showed higher TCA precipitable N and lower acetate: propionate ratio in Z. nummularia while the related trend was found in CFB with V. sinensis. Total volatile fatty acid concentration was higher (P < 0.001) in A. nilotica leaves than V. sinensis hay and Z. nummularia leaves. It has implication on widening the forage resources and providing opportunity to use forage biomass rich in polyphenolic constituents in judicious proportion for reducing methane and enhancing green livestock production. Conclusion: Above all, higher substrate degradability, propionate production, lower methanogenesis in CFB with A. nilotica leaves may be considered useful. Nevertheless, CFB with Z. nummularia also proved its usefulness with higher TCA precipitable N and PF. It has implication on widening the forage resources and providing opportunity to use polyphenol-rich forage biomass for reducing methane and enhancing green livestock production.

Kinetics for the Growth of Alcaligenes eutrophus and the Biosynthesis of Poly-${\beta}$-hydroxybutyrate (Alcaligenes eutrophus 균주의 성장과 Ploy-${\beta}$-hydroxybutyrate 생합성에 대한 속도론)

  • Lee, Yong-Woo;Yoo, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.186-192
    • /
    • 1991
  • It is very important to have a good kinetic model which considers the effects of both ammonium and glucose for the control and optimization of the poly-${\beta}$-hydroxybutyrate (PHB) fermentation. A kinetic model for the growth of Alcaligenes eutrophus and the biosynthesis of PHB under both ammonium and glucose limitation was proposed. Growth rate of residual biomass was expressed as a function of concentrations of residual biomass, glucose and ammonium having glucose inhibition. PHB production rate was expressed as a function of concentrations of residual biomass, glucose, ammonium and PHB content having ammonium and product inhibitions. Novel approaches were made to estimate the parameters in the model equations which considered two limiting substrates. Model parameters were evaluated by graphical and simplex methods. The proposed kinetic model fitted the data very well.

  • PDF

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142

  • Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Yong-Hee;Chung, Kyung-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.359-364
    • /
    • 2005
  • The possible use of milk factory waste water as fermentation media for the production of citric acid by cells of Aspergillus niger ATCC 9142 has been investigated. The addition of $Mn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$ to a medium promoted the citric acid production steadily, but addition of another metal ion $Mg^{2+}$decreased the citric acid production. The concentrations of citric acid were marked up to 7.2g/1 and 16.5g/l in a batch bioreactor by A. niger ATCC 9142 with 50g/1 and 100g/l of reducing sugar concentration in milk factory waste water, respectively.

  • PDF

Protease Inhibitor Production using Streptomyces sp. SMF13

  • Kim, In-Seop;Kim, Hyoung-Tae;Lee, Hyun-Sook;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.288-292
    • /
    • 1991
  • The aim of the current study is to evaluate the effects of medium compositions on the production of protease inhibitor in Streptomyces sp. SMF13. The production of protease inhibitor was counter-currently linked to extra-cellular protease, which were regulated by the culture conditions. Nitrogen source was the most critical ingredient affecting the production of protease inhibitor and protease. Carbon source was an important factor to determine the culture pH which affected very clearly the formation of protease and protease inhibitor. Inorganic phosphate inhibited the protease inhibitor production which was linked to the cell growth rate, although the optimal conditions for the production of protease inhibitor were not favouring to the cell growth.

  • PDF

Fuzzy control of a Fed-Batch Fermentation with Substrate Inhibition Kinetics (기질저해가 있는 유가식 발효공정의 퍼지제어)

  • 최정우;오승목;이광순;이원홍
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.3
    • /
    • pp.3-18
    • /
    • 1993
  • 본 논문에서는 박테리아에서 생성되는 생체 계면활성제인 emulsan의 생산을 위한 유가식 배양에서 에칸을 농도의 제어에 퍼지기법을 적용하였다. 기절저해가 있는 유가식 배양에서 emulsan의 생산을 향상시키기 위해 최대 비성장속도를 갖는 최적 기질농도가 유지되도록 기질인 에탄올의 공급 속도가 조절되어 졌다. 생물반응기에서 Acunetobacter calcoaceticus RAG-1 박테리아를 회분식과 유가식으로 배양 실험하여 최적 에탄올 농도를 구하고, kinetic 모델을 제시하였다. 배양실험의 결과와 지식을 바탕으로 퍼지 규칙을 구성하였다. 퍼지 제어기에서 제어 입력변수는 기질농도의 최적치와 운전치의 오차와 오차의 변화로서 구성되고, 제어 출력변수는 기질 공급 속도의 변화량으로 구성되었다. 멤버쉽 함수를 입력변수의 퍼지 집합화 과정을 통하여 구하였고, 최소-최대법과 무게 중심법을 이용하여 출력 제어값을 구하였다. 유가식 배양의 전산모사와 실험 결과에서 퍼지제어 기법은 최적 기질 농도를 정확히 제어하였으며, emulsan 생산은 향상되었다.

  • PDF

Studies on Screening and Isolation of .$\alpha$-Amylase Inhibitors of Soil Microorganisms (I)

  • Kwak, Jin-Hwan;Choi, Eung-Chil;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.8 no.2
    • /
    • pp.67-75
    • /
    • 1985
  • To find emylase inhibitors produced by microorganisms from soil, a strain which had a strong inhibitory activity against bacteria .alpha.-amylase was isolated from the soil smaple collected in Seoul. The morphological and physiological characteristics of this strain on several media and its utilization of carbon sources showed that it was one of Streptomyces specties according to the international Streptomyces Project method. The amylase inhibitor of this strain was purified by means of acetone precipitation, adsorption on Amberlite XAD-2, and column chromatography on Amberlite CG-50 and SP-Sephadex C-25. The inhibitor was stable at the pH range of 1-10 and at 100.deg.C for half an hour, and had inhibitory activities against other amylases such as salivary .alpha.-amylase, pancreatic .alpha.-amylase, fungal .alpha.-amylase and glucoamylase. The kinetic studies of the inhibitor showed that its inhibitory effect on starch hydrolysis by .alpha.-amylase was non-competitive.

  • PDF

Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1221-1225
    • /
    • 2007
  • A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.