• Title/Summary/Keyword: fermentation kinetics

Search Result 77, Processing Time 0.024 seconds

Kinetics of Strictly Anaerobic Ethanol Fermentation from Starch by Clostridium thermohydrosulfuricum

  • PARK, YOUNG-MIN;CHUL-HO KIM;SANG-KI RHEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.288-292
    • /
    • 1992
  • Kinetics of anaerobic ethanol fermentation by Clostridium thermohydrosulfuricum were investigated for the one-step production of ethanol from starch. A mutant strain with a high ethanol yield was induced from C. thermohydrosulfuricum. The mutant, designated as ME4, produced anaerobically 6.1 g/l of ethanol, 3.1 g/l of lactate and 0.1 g/l of acetate from 20 g/l of starch at $68^{\circ}C.

  • PDF

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients

  • Shim, S.B.;Verdonk, J.M.A.J.;Pellikaan, W.F.;Verstegen, W.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1444-1452
    • /
    • 2007
  • An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest $NH_3$, pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation

  • Bankar, Sandip B.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.652-658
    • /
    • 2011
  • The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Effects of Enzyme Application Method and Levels and Pre-treatment Times on Rumen Fermentation, Nutrient Degradation and Digestion in Goats and Steers

  • Hong, S.H.;Lee, B.K.;Choi, N.J.;Lee, Sang S.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.389-393
    • /
    • 2003
  • Present study investigate the effect of enzyme supplementation, methods (applied to rumen or enzyme treated diet) compared with no enzyme diet, on rumen fermentation and apparent nutrient digestibility in a $3{\times}3$ Latin square design with three rumen cannulated Korean Native goats. In situ rumen degradation kinetics was studied in three rumen cannulated Holstein steers. Three diets were, no enzyme, 1% enzyme in rumen and 1% enzyme in diet. The enzyme was sprayed onto forage, and the forage: concentrate ratio was 30:70. Degradation kinetics was studied with three enzyme levels (0, 1 and 2%, w/w) and four pre-treatment times (0, 1, 12 and 24 h). Results suggested that enzyme application method did not affect rumen fermentation, ruminal enzyme activity and total tract apparent digestibility. Nutrient degradation rate and effective degradability of DM, NDF and ADF increased with increasing enzyme level and pre-treatment times. Degradation of nutrients was affected by enzymes levels or pre-treatment times. Therefore, it is probable that the improved degradation may be due to the supplemented exogenous hydrolytic enzymes under a certain condition.

Kinetic Evaluation of Methane Fermentation of Thermally Disintegrated Wastewater Sludge (열처리한 하수슬러지 메탄발효의 동력학적 해석)

  • Park, Ki Young;Lee, Jae Woo;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.927-933
    • /
    • 2007
  • Waste activated sludge (WAS) was thermally pretreated to enhance hydrolysis and ultimately methane yield. Batch and semi-continuous anaerobic digestion were conducted to evaluate the performance of methane fermentation of the hydrolyzed sludge and to investigate the kinetics of sludge fermentation. Thermal pretreatment remarkably enhanced digestion performances particularly the methane fermentation with three times more methane production than before the pretreatment. Gas production and kinetic parameters in the semi-continuous anaerobic digestion were estimated using Chen Hashimoto model. The model simulation fitted well the experimental results and the model was shown to be suitable for evaluating the effects of disintegration of WAS in anaerobic digestion. Three parameters ($B_o$, K, and ${\mu}_m$) determined by model simulation were $0.0807L-CH_4/g-VS$, 0.453 and $0.154d^{-1}$ for control sludge, and $0.253L-CH_4/g-VS$, 0.835 and $0.218d^{-1}$ for thermally pretreated sludge, respectively.

Evaluation of the nutritional value of locally produced forage in Korea using chemical analysis and in vitro ruminal fermentation

  • Ki, Kwang Seok;Park, Su Bum;Lim, Dong Hyun;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.355-362
    • /
    • 2017
  • Objective: The use of locally produced forage (LPF) in cattle production has economic and environmental advantages over imported forage. The objective of this study was to characterize the nutritional value of LPF commonly used in Korea. Differences in ruminal fermentation characteristics were also examined for the LPF species commonly produced from two major production regions: Chungcheong and Jeolla. Methods: Ten LPF (five from each of the two regions) and six of the most widely used imported forages originating from North America were obtained at least three times throughout a year. Each forage species was pooled and analyzed for nutrient content using detailed chemical analysis. Ruminal fermentation characteristics were also determined by in vitro anaerobic incubations using strained rumen fluid for 0, 3, 6, 12, 24, and 48 h. At each incubation time, total gas, pH, ammonia, volatile fatty acid (VFA) concentrations, and neutral detergent fiber digestibility were measured. By fitting an exponential model, gas production kinetics were obtained. Results: Significant differences were found in the non-fiber carbohydrate (NFC) content among the forage species and the regions (p<0.01). No nutrient, other than NFC, showed significant differences among the regions. Crude protein, NFC, and acid detergent lignin significantly differed by forage species. The amount of acid detergent insoluble protein tended to differ among the forages. The forages produced in Chungcheong had a higher amount of NFC than that in Jeolla (p<0.05). There were differences in ruminal fermentation of LPF between the two regions and interactions between regions and forage species were also significant (p<0.05). The pH following a 48-h ruminal fermentation was lower in the forages from Chungcheong than from Jeolla (p<0.01), and total VFA concentration was higher in Chungcheong than in Jeolla (p = 0.05). This implies that fermentation was more active with the forages from Chungcheong than from Jeolla. Analysis of gas production profiles showed the rate of fermentation differed among forage species (p<0.05). Conclusion: The results of the present study showed that the nutritional values of some LPF (i.e., corn silage and Italian ryegrass) are comparable to those of imported forages widely used in Korea. This study also indicated that the nutritional value of LPF differs by origin, as well as by forage species. Detailed analyses of nutrient composition and digestion kinetics of LPF should be routinely employed to evaluate the correct nutritional value of LPF and to increase their use in the field.