Browse > Article

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation  

Chung, Dong-Hwa (Faculty of Marine Bioscience and Technology, Kangnung National University)
Kim, Myoung-Dong (School of Bioscience and Biotechnology, Kangwon National University)
Kim, Dae-Ok (Department of Food Science and Technology, Kyung Hee University)
Koh, Young-Ho (Center for Food Safety Evaluation, Korea Food and Drug Administration)
Seo, Jin-Ho (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Publication Information
Food Science and Biotechnology / v.15, no.5, 2006 , pp. 664-671 More about this Journal
Abstract
Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.
Keywords
lactic acid bacteria; fermentation; modeling; growth kinetics; microbial interaction;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 De Vuyst L, De Vin F, Vaningelgem F, Degeest B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707 (2001)   DOI   ScienceOn
2 Vereecken KM, Dens EJ, Van Impe JF. Predictive modeling of mixed microbial populations in food products: evaluation of two-species models. J. Theor. Biol. 205: 53-72 (2000)   DOI   ScienceOn
3 Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM, Recent advances in cheese microbiology. Int. Dairy J. 11: 259-274 (2001)   DOI   ScienceOn
4 Leroy F, De Vuyst L. The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Appl. Environ. Microbiol. 65: 5350-5356 (1999)
5 Vereecken KM, Devlieghere F, Bockstaele A, Debevere J, Van Impe JF. A model for lactic acid-induced inhibition of Yersinia enterocolitica in mono- and co-culture with Lactobacillus sakei. Food Microbiol. 20: 701-713 (2003)   DOI   ScienceOn
6 Leroy F, De Vuyst L. Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl. Environ. Microbiol. 67: 4407-4413 (2001)   DOI
7 Martens DE, Beal C, Malakar P, Zwietering MH, Van't Riet K. Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae, I. Individual growth kinetics. Int. J. Food Microbiol. 51: 53-65 (1999)   DOI   ScienceOn
8 Passos FV, Fleming HP, Ollis DF, Felder RM, McFeeters RF. Kinetics and Modeling of Lactic acid production by Lactobacillus plantarum. Appl. Environ. Microbiol. 60: 2627-2636 (1994)
9 Breid F, Fleming HP. Modeling of the competitive growth of Listeria monocytogenes and Lactococcus lactis in vegetable broth. Appl. Environ. Microbiol. 64: 3159-3165 (1998)
10 Malakar PK, Martens DE, Zwietering MH, Beal C, Van't Riet K. Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. Int. J. Food Microbiol. 51: 67-79 (1999)   DOI   ScienceOn
11 Gimenez B, Dalgaard P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. J. Appl. Microbiol. 96: 96-109 (2004)   DOI   ScienceOn
12 Koh YH. Analysis and modeling of the interactions of lactic acid bacteria in mixed fermentation. MS thesis, Seoul National University, Seoul, Korea (2002)
13 Tsoularis A. Analysis of logistic growth models. Res. Lett. Inf. Math. Sci. 2: 23-46 (2001)
14 Rosso L, Lobry JR, Bajard S, Flandrois JP. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61: 610-616 (1995)
15 Cornu M, Kalmokoff M, Flandrois JP. Modelling the competitive growth of Listeria monocytogenes and Listeria innocua in enrichment broths. Int. J. Food Microbiol. 73: 261-274 (2002)   DOI   ScienceOn
16 Van Kranenburg R, Kleerebezem M, Van Hylckama Vlieg J, Ursing BM, Boekhorst J, Smit BA, Ayad EHE, Smit G, Siezen RJ. Flavor formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int. Dairy J. 12: 111-121 (2002)   DOI   ScienceOn
17 Leroy F, De Vuyst L. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 65: 974-981 (1999)
18 Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L. Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl. Environ. Microbiol. 68: 1431-1435 (2002)   DOI
19 Leroy F, De Vuyst L. A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Appl. Environ. Microbiol. 69: 1093-1099 (2003)   DOI
20 Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12: 151-161 (2002)   DOI   ScienceOn
21 Passos FV, Fleming HP, Ollis DF, Hassan HM, Felder RM. Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract. Appl. Microbiol. Biotechnol. 40: 143-150 (1993)
22 Pin C, Baranyi J. Predictive models as means to quantify the interactions of spoilage organisms. Int. J. Food Microbiol. 41: 59-72 (1998)   DOI   ScienceOn
23 Lejeune R, Callewaert R, Crabbe K, De Vuyst L. Modeling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. J. Appl. Microbiol. 84: 159-168 (1998)   DOI   ScienceOn
24 Dens EJ, Vereecken KM, Van Impe JF. A prototype model structure for mixed microbial populations in homogeneous food products. J. Theor. Biol. 201: 159-170 (1999)   DOI   ScienceOn
25 Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171 (2002)   DOI   ScienceOn
26 Neysens P, De Vuyst L. Kinetics and modeling of sourdough lactic acid bacteria. Trends Food Sci. Tech. 16: 95-103 (2005)   DOI   ScienceOn
27 Messens W, Verluyten J, Leroy F, De Vuyst L. Modeling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int. J. Food Microbiol. 81: 41-52 (2003)   DOI   ScienceOn
28 Zwietering MR, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56: 1875-1881 (1990)
29 Passos FV, Ollis DF, Fleming HP, Hassan HM, Felder RM. Modeling the cucumber fermentation: growth of Lactobacillus plantarum. J. Ind. Microbiol. 12: 341-345 (1993)   DOI
30 Malakar PK, Barker GC, Zwietering MH, Van't Riet K. Relevance of microbial interactions to predictive microbiology. Int. J. Food Microbiol. 84: 263-272 (2003)   DOI   ScienceOn
31 Dens EJ, Van Impe JF. On the need for another type of predictive model in structured foods. Int. J. Food Microbiol. 64: 247-260 (2001)   DOI   ScienceOn
32 Leroy F, Degeest B, De Vuyst L. A novel area of predictive modeling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73: 251-259 (2002)   DOI   ScienceOn
33 Charalampopoulos D, Pandiella SS, Webb C. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J. Appl. Microbiol. 92: 851-859 (2002)   DOI   ScienceOn
34 Powell M, Schlosser W, Ebel E. Considering the complexity of microbial community dynamics in food safety risk assessment. Int. J. Food Microbiol. 90: 171-179 (2004)   DOI   ScienceOn
35 Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23: 277-294 (1994)   DOI   ScienceOn
36 Neysens P, Messens W, Gevers D, Swings J, De Vuyst L. Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions. Microbiology 149: 1073-1082 (2003)   DOI   ScienceOn
37 Fujikawa H, Kai A, Morozumi S. A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol. 21: 501-509 (2004)   DOI   ScienceOn
38 Liu F, Guo Y, Li Y. Interactions of microorganisms during natural spoilage of pork at $5^{\circ}C$. J. Food Eng. 72: 24-29 (2006)   DOI   ScienceOn
39 Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Tech. 15: 67-78 (2004)   DOI   ScienceOn
40 Ganzle MG, Ehmann M, Hammes WP. Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl. Environ. Microbiol. 64: 2616-2623 (1998)