Browse > Article
http://dx.doi.org/10.4014/jmb.1103.02007

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation  

Bankar, Sandip B. (Food Engineering and Technology Department, Institute of Chemical Technology)
Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 652-658 More about this Journal
Abstract
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.
Keywords
Growth kinetics; oxygen transfer rate; oxygen utilization rate; poly-${\varepsilon}$-lysine; Streptomyces noursei;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Shima, S., S. Oshima, and H. Sakai. 1983. Biosynthesis of $\varepsilon$- poly-L-lysine by washed mycelium of Streptomyces albulus no. 346. Nippon Nogei Kagaku Kaishi 57: 221-226.   DOI
2 Shuler, M. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 155-184. 2nd Ed. Prentice-Hall of India, New Delhi.
3 Yoshida, T. and T. Nagasawa. 2003.$\varepsilon$-Poly-L-lysine: Microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 62: 21-26.   DOI   ScienceOn
4 Zhang, Y., X. Feng, H. Xu, Z. Yao, and P. Ouyang. 2010. $\varepsilon$- Poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour. Technol. 101: 5523-5527.   DOI   ScienceOn
5 Zou, X., H. Hang, J. Chu, Y. Zhuang, and S. Zhang. 2009. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 $m^3$ scale. Bioresour. Technol. 100: 1406-1412.   DOI   ScienceOn
6 Luedeking, R. and E. Piret. 1959. A kinetic study of the lactic acid fermentation. J. Biochem. Microbiol. Technol. Eng. 1: 393-412.   DOI
7 Monod, J. 1949. The growth of bacterial cultures. A Review. Microbiology 3: 371-394.   DOI   ScienceOn
8 Palomares, L. A. and O. Ramirez. 1996. The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22: 225-237.   DOI
9 Pinches, A. and L. Pallent. 1986. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnol. Bioeng. 28: 1484-1496.   DOI   ScienceOn
10 Rowe, G. E., A. Margaritis, and N. Wei. 2003. Specific oxygen uptake rate variations during batch fermentation of Bacillus thuringiensis subspecies kurstaki HD-1. Biotechnol. Progr. 19: 1439-1443.   DOI   ScienceOn
11 Saimura, M., M. Takehara, S. Mizukami, K. Kataoka, and H. Hirohara. 2008. Biosynthesis of nearly monodispersed poly($\varepsilon$-Llysine) in Streptomyces species. Biotechnol. Lett. 30: 377-385.   DOI   ScienceOn
12 Shih, I. L., T. C. Wang, S. Z. Chou, and G. D. Lee. 2010. Sequential production of two biopolymers levan and poly-$\varepsilon$- lysine by microbial fermentation. Bioresour. Technol. 102: 3966- 3969.
13 Sampaio, F. C., P. Torre, F. L. Passos, P. Perego, F. V. Passos, and A. Converti. 2004. Xylose metabolism in Debaromyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol. Progr. 20: 1641-1650.   DOI   ScienceOn
14 Shen, W. C., D. Yang, and H. J. Ryser. 1984. Calorimetric determination of microgram quantities of polylysine by trypan blue precipitation. Anal. Biochem. 142: 521-524.   DOI   ScienceOn
15 Shih, I. L., M. H. Shen, and Y. T. Van. 2006. Microbial synthesis of poly($\varepsilon$-lysine) and its various applications. Bioresour. Technol. 97: 1148-1159.   DOI   ScienceOn
16 Shima, S. and H. Sakai. 1981. Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric. Biol. Chem. 45: 2497-2502.   DOI
17 Shima, S., H. Matsuoka, T. Iwamoto, and H. Sakai. 1984. Antimicrobial action of $\varepsilon$-poly-L-lysine. J. Antibiot. 37: 1449- 1455.   DOI
18 Dorresteijn, R. C., C. D. Gooijer, J. Tramper, and E. C. Beuvery. 1994. A simple dynamic method for on-line and off-line determination of $ k_L $a during cultivation of animal cells. Biotechnol. Tech. 8: 675-680.
19 Felse, P. A. and T. Panda. 2000. Submerged culture production of chitinase by Trichoderma harzianum in stirred-tank bioreactors: The influence of agitator speed. Biochem. Eng. J. 4: 115-120.   DOI   ScienceOn
20 Galaction, A. I., D. Cascaval, C. Onisco, and M. Turnea. 2004. Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeast and fungus broths. Biochem. Eng. J. 20: 85-94.   DOI   ScienceOn
21 Garcia-Ochoa, F. and E. Gomez. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27: 153-176.   DOI
22 Garcia-Ochoa, F., V. Santos, J. Casas, and E. Gomez. 2000. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18: 549-579.   DOI   ScienceOn
23 Hiraki, J., T. Ichikawa, S. I. Ninomiya, H. Seki, K. Uohama, H. S. Seki, Kimura, Y. Yanagimoto, and J. W. Barnett. 2003. Use of ADME studies to confirm the safety of $\varepsilon$-polylysine as a preservative in food. Regul. Toxicol. Pharm. 37: 328-340.   DOI   ScienceOn
24 Garcia-Ochoaa, F., E. Gomeza, V. E. Santosa, and J. C. Merchukb. 2010. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 49: 289-307.   DOI   ScienceOn
25 Gomez, E., V. E. Santos, A. Alcon, and F. Garcia-Ochoa. 2006. Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chem. Eng. Sci. 61: 4595-4604.   DOI   ScienceOn
26 Hiraki, J. and E. Suzuki. 1999. Process for producing $\varepsilon$-poly-Llysine with immobilized Streptomyces albulus. US Patent 5900363.
27 Hirohara, H., M. Takehara, M. Saimura, A. Masayuki, and M. Miyamoto. 2006. Biosynthesis of poly($\varepsilon$-L-lysine)s in two newly isolated strains of Streptomyces sp. Appl. Microbiol. Biotechnol. 73: 321-331.   DOI   ScienceOn
28 Kahar, P., T. Iwata, J. Hiraki, Y. E. Park, and M. Okabe. 2001. Enhancement of $\varepsilon$-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190-194.
29 Kawase, Y., B. Halard, and M. Moo-Young. 1992. Liquid-phase mass transfer coefficients in bioreactors. Biotechnol. Bioeng. 39: 1133-1140.   DOI
30 Bankar, S. B. and R. S. Singhal. 2010. Optimization of poly-$\varepsilon$- lysine production by Streptomyces noursei NRRL 5126. Bioresour. Technol. 101: 8370-8375.   DOI   ScienceOn
31 Bankar, S. B. and R. S. Singhal. 2011. Metabolic precursors enhance the production of poly-$\varepsilon$-lysine by Streptomyces noursei NRRL 5126. Eng. Life Sci. DOI: 10.1002/elsc.201000127.
32 Bok, S. H. and A. L. Demain. 1977. An improved calorimetric assay for polyols. Anal. Biochem. 81: 18-20.   DOI   ScienceOn
33 Calik, P., P. Yilgor, P. Ayhan, and A. Demir. 2004. Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem. Eng. Sci. 59: 5075-5083.   DOI   ScienceOn