• Title/Summary/Keyword: fermentation control

Search Result 1,803, Processing Time 0.031 seconds

Effects of Fermentation Method and Brown Rice Content on Quality Characteristics of Brown Rice Vinegar (발효 현미식초의 발효방법 및 원료함량에 따른 품질변화)

  • Joo, Kyung-Ho;Cho, Myung-Hui;Park, Kee-Jai;Jeong, Seong-Weon;Lim, Jeong-Ho
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • To evaluate the quality of brown rice vinegar made by traditional fermentation in terms of Zymotechnic data and material content, vinegars prepared using a traditional leavening agent and yeast were compared. Amino acid, total nitrogen, free sugar, organic acid, and mineral levels were assessed, with vinegars made with initial brown rice contents of 12.36% (w/v). Vinegar made using Nuruk as fermenting agent (traditional fermentation, TF), with a brown rice content of 20% (w/v), and vinegar prepared using yeast for fermentation (control fermentation, CF), with a brown rice content of 12% (w/v) were compared. TF vinegar had a total nitrogen content about 2.0.4.6-fold that of CF vinegar. Total nitrogen in TF vinegar was 350.460 mg/100g, and in CF vinegar the level was 100.140 mg/100g. TF vinegar had more minerals, free sugars, and amino acids compared with CF vinegar. When free sugar was assessed, TF vinegar had a glucose level of 3.45 g/100g, double that of CF vinegar. Amino acid levels were five-fold higher in TF vinegar then in CF vinegar. When brown rice content was 36% (w/v), the amino acid level was $6088.22\;{\mu}g/mL$ in TF vinegar and $1194.05\;{\mu}g/mL$ in CF vinegar.

Fermentation of Chinese Cabbage Kimchi Soaked with L. acidophilus and Cleaned Materials by Ozone (오존처리 청정재료와 L. acidophilus를 이용한 배추김치의 숙성)

  • 김미정;오영애;김미향;김미경;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.165-174
    • /
    • 1993
  • This work was conducted to study the use of L. acidophilus, which exists in humun intestine for the fermentation of Chinese cabbage kimchi. The changes in vitamins, the number of microflora and sensory quality were observed during fermentation after the microflora which was not related to kimchi fermentation was eliminated by treatment with ozone water or ozone gas. The growth rate of L. acidophilus in the cabbage juice was higher than that in MRS broth. The growth of L. acidophilus was slightly promoted by adding 1~2% hot pepper powder while that was inhibited by ginger and garlic. Therefore, it was shown that the regulation of fermentation was possible by addition of spices. The result of treating spice with ozone gas and ozone water 6mg/L/sec for 1 hour was that the survival ratio of total microflora was 6~20%. When L. acidophilus was added to materials after ozone treatment, the fermentation rate was improved and the polysaccharides in the cell wall were used when the usable free sugar was all consumed. The contents of vitamin B$_1$ and C in the ozone treated kimchi was higher than in the control.

  • PDF

Reduction of Acrylamide Formation in Potato Chips Fermented by Bacillus sp. (Bacillus sp. 발효를 이용한 감자 칩의 아크릴아마이드 저감화)

  • Lee, Joongjae;Oh, Myeonggeun;Chang, Yoon Hyuk;Lee, Youngseung;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Sung-Hwan;Jeong, Yoonhwa;Kim, Misook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.460-465
    • /
    • 2016
  • The market for potato chips has expanded due to increased consumption of seasoned potato chips. However, the deep-frying process facilitates development of a browning color and formation of acrylamide. The objective of this work was to minimize browning color and acrylamide formation by fermentation prior to deep-frying. Potato slices were fermented by using three Bacillus strains, B. licheniformis (BL), B. methylotrophicus (BM), and B. subtilis, for 6 h at $30^{\circ}C$. In all fermentation groups, contents of total sugars in potato slices decreased. The color of fermented potato chips improved compared to the control. BM potato chips showed the best color values (76.33 in L value, 5.67 in a value, and 34.79 in b value). All fermentation processes reduced levels of acrylamide in deep-fried potato chips. Fermentation of potato slices for 2 h by BL reduced up to 96.1% acrylamide content. It was concluded that the fermentation process can positively affect color development and acrylamide formation.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

Enhanced hydrogen fermentation of food waste (음식물쓰레기를 이용한 수소발효 시 효율향상에 관한 연구)

  • Han, Sun-Kee;Kim, Hyun-Woo;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.105-113
    • /
    • 2003
  • Successful operation of a reactor can be accomplished when it is operated at proper D depending on the state of degradation. Operation at high D leads to the washout of biomass in the reactor while operation at low D leads to product inhibition due to the accumulation of excess VFA. These appear to limit the production of hydrogen to reach a higher level. Operation by D control was performed to improve the efficiency of hydrogen fermentation of food waste. Although simple organic matters were rapidly degraded in the early stage (day 1-2), proper VFA concentration and pH values were kept in the reactor at D of $4.5d^{-1}$, which was previously reported to be optimum initial D. High butyrate/acetate (B/A) ratios over 3.2 were obtained. Without D control, the reduction of simple organic matters after day 2 caused the decrease of VFA production and the increase of pH. Hydrogen production also decreased, as microbial proliferation was less than microbial loss by washout. However, the reactor performance was dramatically improved at D control from 4.5 to $2.3d^{-1}$. It showed the highest B/A ratios over 2.0 among the reactors on day 4-7. The second hydrogen peak appeared on day 4, resulting in the highest fermentation efficiency (70.8%) among the reactors. It was caused by the enhanced degradation of slowly degradable matters. The COD removed was converted to hydrogen (19.3%), VFA (36.5%), and ethanol (15.0%). Therefore, the strategy using D control, depending on the state of degradation, was effective in improving the efficiency of hydrogen fermentation.

  • PDF

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition (반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향)

  • Lee, S.H.;Seo, I.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.789-804
    • /
    • 2005
  • This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

Fermentation Characteristics of Cuttlefish Kimchi with Yogurt and Vitamin C (요구르트와 비타민 C를 첨가한 갑오징어 김치의 발효특성)

  • Jang, Mi-Soon;Seo, Kyoung Chun;Nam, Ki-Ho;Park, Hee-Yeon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.774-782
    • /
    • 2012
  • Baechu kimchi without cuttlefish (control), baechu kimchi with cuttlefish (CK), cuttlefish baechu kimchi with yogurt (CK+Y), and cuttlefish baechu kimchi with vitamin C (CK+VC) were prepared, and the fermentation characteristics of the prepared kimchi samples were investigated during 28 days of fermentation at $4^{\circ}C$. The levels of moisture, crude lipid, and crude ash did not differ much among the samples, but the crude protein levels of CK, CK+Y, and CK+VC were greater than that of the control. The pH values of CK+Y and CK+VC slowly decreased compared with those of the control and CK during fermentation. The acidity increased sharply until 21 days then gradually increased thereafter. The total microbial counts achieved maximum levels at 21 days, and the kimchi to which yogurt and vitamin C were added showed values lower than that of the control. The number of Leuconostoc sp. in CK+Y and CK+VC was higher than that in the control. In our sensory evaluations, cuttlefish kimchi with yogurt or vitamin C scored highest in terms of texture, sour taste, ripened taste, and overall acceptability.

Effects of Dandalion (Taraxacum mongolicum) Powder on Quality Properties of Yoghurt (민들레분말 첨가 요구르트의 품질 특성)

  • Jung, Young-Hak;Choi, Hee-Young;Bae, In-Hyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • The effects of adding Dandalion powder (Taraxacum mongolicum powder, TMP) to yoghurt manufacture on quality characteristics during the fermented and storage were investigated. Yoghurt samples were prepared with 0.3%, 0.6%, 0.9% TMP. Changes in Titratable acidity, Lactic acid bacterial (LAB) population, pH, viscosity, sensory characteristics were monitored during the fermented and storage. LAB and titratable acidity added with the TMP in yoghurt was higher, and pH, viscosity was lower than those of the control yoghurt during the fermented. Also the TMP yoghurt was lower viscosity than control in fermentation but this viscosity became to be increased higher than the control during storage. The sensory values of the yoghurt added with the TMP were low compared with the Control. Regarding taste, appearance, sensory properties it were suggested that the added optimum ratio of TMP for yoghurt was below 0.3%. This study suggests that dandalion powder (TMP) added yoghurt supply additional nutrients while maintaining the flavor and quality.

  • PDF

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).