• Title/Summary/Keyword: fermentation control

Search Result 1,799, Processing Time 0.038 seconds

Quality Properties of Yogurt Added with Hot Water Concentrates from Allium hookeri Root (삼채 뿌리 열수 농축물을 첨가한 발효유의 품질특성)

  • Jun, Hyun-Il;Park, Seon-Yeong;Jeong, Do-Yeon;Song, Geun-Seoup;Kim, Young-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1415-1422
    • /
    • 2014
  • Hot water extraction concentrate was prepared from Alliun hookeri root (AHR) to evaluate its applicability to yogurt. The highest antioxidant activity of hot water concentrates was obtained under extraction conditions of 4 hr at $95^{\circ}C$. Antioxidant activities measured by DPPH radical assay, ABTS radical cation assay, reducing power, and cheating activity were highly correlated with total phenolic (89.51 mg/g) and total flavonoid (52.71 mg/g) contents, with R values of 0.94 and 0.96, respectively. Yogurt was fermented with a commercial lactic acid bacteria mixed strain (Yo-mix$^{TM}$ 305) for 10 hr at $42^{\circ}C$ after addition of 0~10% (w/w) hot water concentrates from AHR to yogurt base. As fermentation proceeded, pH and $^{\circ}Brix$ of yogurt decreased from 6.57~6.60 to 4.34~4.51 and from 8.10~8.90% to 4.60~5.25%, respectively, whereas titrate acidity, viscosity, and viable cell numbers increased from 0.22~0.23% to 1.01~1.10%, from $0mPa{\cdot}s$ to $202.55{\sim}290.50mPa{\cdot}s$, and from 6.40~6.80 log CFU/mL to 8.60~9.20 log CFU/mL, respectively. There was no significant difference in any sensory attribute between the control and 2.5% addition group, suggesting that 2.5% hot water concentrate from AHR could be used to manufacture yogurt.

Quality Characteristics of White Pan Bread with Banana (바나나를 이용한 식빵의 품질특성)

  • Choi, Ik-Joon
    • Culinary science and hospitality research
    • /
    • v.22 no.2
    • /
    • pp.78-92
    • /
    • 2016
  • This study investigated the quality characteristics of white pan bread with banana addition. This analysis was through mixograph and stickiness of dough, fermentation rate, TPA, crumbScan image analysis, color, moisture contents and acceptance test. Mixograph peak time presented 4~5 minutes on every sample. However, CON, B10 and B20 sample presented more than 60%, and B30, B40 presented less than 60% at peak value (%). The result indicated that banana addition increased as the stickiness decreased. The fermentation rate generally increased, but the sample B40 decreased after 75 minutes. The result of crust and inside color, CON was the highest on lightness L value, B40 was the highest on both red a value and yellow b value. The result of pH showed that B40 was the lowest, and more banana addition made pH decreased. Thus, adding banana influences negatively on volume and cost of the product. The image analysis through crumbScan did not show any significant difference on crust thickness and distortion of crumb fineness. On the other hand, CON value was 774.33 that was the lowest, and B40 value was 927.66 which is the highest on the density of crumb fineness. Hardness showed a significant difference; B40 was the lowest, and Control was the highest. Moisture contents generally had a noticeable difference; CON value was the highest, and banana addition increased as the value decreased. At the result of acceptance test, one of the sensory tests, B20 showed the highest grade, and B40 showed the worst. Based on the above results of characteristic difference, banana addition could influence volume of the bread negatively.

Quality Characteristics of Yogurt prepared with Rice Bran Streptococcus thermophilus and Lactobacillus casei (Streptococcus thermophilus와 Lactobacillus casei를 이용한 미강 첨가 발효유의 품질특성에 관한 연구)

  • Hong, Sung-Moon;Gu, Min-Seong;Chung, Eui-Chun;Kang, Pil-Gu;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.17-25
    • /
    • 2015
  • The present study was carried out to evaluate the preparation of the fermented milks with rice bran and to prove that the bacteria used are necessary for providing amino acids in this process. The rice bran on fermented milk with Streptococcus thermophilus (ST-body1) and Lactobacillus casei (LC-10). The fermentation limit was set until acidimetry score reaches 1. There are reports of titratable acidity, pH, viable cell count and amounts of organic acids affecting amino acid production about physical and chemical analysis measured using HPLC. Finally, sensory test was surveyed. In this study, the rate of acidification was higher in the fermented milk with rice bran than in the common fermented milk. In case of the number of cells was $1.0{\times}10^8CFU/mL$ in group. The lactic acid and citric acid content in yogurts prepared with rice bran using Streptococcus thermophilus (ST-body1) and Lactobacillus casei (LC-10) was higher than that in the control yogurt. Amino acids derived by rice bran were effected in fermentation for each bacteria's necessary amino acid production, and it made bacteria growth larger. From the physical test of the fermented milk with rice bran, flavor, texture, sweetness, overall taste of the fermented milk of Streptococcus thermophilus (ST-body1) were found to be much better than those of the other groups. The results obtained for the fermented milk prepared with rice bran using Streptococcus thermophilus (ST-body1) are significant.

  • PDF

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.

Effects of Saccharomyces cerevisiae Supplementation and Anhydrous Ammonia Treatment of Wheat Straw on In-situ Degradability and, Rumen Fermentation and Growth Performance of Yearling Lambs

  • Comert, Muazzez;Sayan, Yilmaz;Ozelcam, Hulya;Baykal, Gulsah Yegenoglu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.639-646
    • /
    • 2015
  • The effects of Saccharomyces cerevisiae supplementation ($6.6{\times}10^8cfu$) and anhydrous ammonia treatment (3%) of wheat straw (WS) were investigated on in-situ dry matter (DM) degradability, and on rumen fermentation and growth performance of lambs. Rumen-fistulated Menemen sheep fed a diet with and without live yeast were used to assess the DM degradability characteristics of WS and ammonia-treated wheat straw ($WS_{NH3}$). Twenty-six yearling Menemen male lambs were fed in four groups. Lambs of control group (WS) received untreated WS without supplemental yeast, whereas other three groups were fed WS treated with anhydrous ammonia ($WS_{NH3}$ group), untreated WS and yeast (WS+YEAST group) or WS treated with anhydrous ammonia and yeast ($WS_{NH3}$+YEAST group). Supplemented live yeast (4 g/d) was added in the diet. Lambs were offered untreated or ammonia treated WS ad-libitum and concentrate was fed at 1% of live body weight. The degradability of the water-insoluble (fraction B) was significantly increased by all of the treatment groups. Potential degradability (A+B), effective DM degradability's (pe2, pe5, and pe8) and average daily weight gain increased only in $WS_{NH3}$+YEAST group (p<0.05). Voluntary DM intake was not increased by the treatments (p>0.05), but voluntary metabolizable energy and crude protein intake were increased by $WS_{NH3}$ and by $WS_{NH3}$+YEAST (p<0.05). Average daily rumen pH was not affected by any of the treatments, but average daily $NH_3$-N was significantly higher in the $WS_{NH3}$ and $WS_{NH3}$+YEAST groups, and total volatile fatty acids were significantly higher in the WS+YEAST and $WS_{NH3}$+YEAST groups. In conclusion, the improvement of feed value of WS was better by the combination of ammonia-treatment and yeast supplementation compared to either treatment alone.

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

Rapid Fermentation of Fish Sauce and Its Kinetics (어장유의 속성발효와 동력학적 고찰)

  • KIM Byeong-Sam;PARK Sang-Min;CHOI Soo-Il;KIM Chang-Yang;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.10-19
    • /
    • 1986
  • A study on the rapid fermentation of fish sauce has been carried out for effective utilization of sardine. The frozen sardine was thawed at room temperature, chopped, homogenized with equal amount of water and then hydrolyzed by addition of commercial proteolytic enzymes such as bromelain, papaya protease, ficin and a enzyme mixture under different conditions of hydrolysis. The effect of wheat gluten for masking fishy odor and color development during thermal treatment were also tested. The reaction mixture was heated for 30 minutes at $100^{\circ}C$ for enzyme inactivation, pasteurization and color development and then centrifuged for 20 minutes at 4,000 rpm. Finally, table salt and benzoic acid were added for bacteriostatic effect. The results were summarized as follows ; 1. The hydrolyzing temperature, time, pH and the concentration of enzymes based on the weight of whole sardine for optimal hydrolysis were as follows: autolysis, $52.5^{\circ}C$, 4 hours, pH 8.0: with $0.25\%$ bromelain, $52.5^{\circ}C$, 4 hours, pH 6.6 :with $0.25\%$ ficin, $52.5^{\circ}C$, 4 hours, pH 6.8: with $0.3\%$ papaya protease, $52.5^{\circ}C$, 4 hours, pH 6.6: with $6\%$ enzyme mixture, $52.5^{\circ}C$, 4 hours, pH 6.9, respectively. But pH control was not much beneficial in increasing yield. 2. The hydrolytic reaction of chopped sardine with proteolytic enzymes could be interpreted as a first order reaction that devided into 2 periods with different reaction rate constsnts. $Q_{10}$ values of the first period prior to 4 hours were 1.23 to 1.31, and those of post 4 hours were 1.25 to 1.55. The corresponding activation energies were $1.81{\times}10^4\;to\;2.34{\times}10^4\;kJ/kmol$ and $1.92{\times}10^4\;to\;3.77{\times}10^4\;kJ/kmol$, respectively. 3. The reasonable amount of $75\%$ vital wheat gluten for addition was $9\%$ of chopped sardine. 4. The dark brown color was mainly developed during the thermal treatment for 30 minutes at $100^{\circ}C$ and not changed during storage.

  • PDF

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Evaluation of Fermentation Ability of Microbes for Corn Silage Inoculant (옥수수 사일리지용 미생물의 발효능력 평가)

  • Kim, Jong-Geun;Ham, Jun-Sang;Chung, Eui-Soo;Seo, Sung;Park, Hyung-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • Corn is very important forage in Korea. The great part of them is utilized as silage. Generally, it contains a lot of grains that is feed of animal. This experiment was conducted to evaluation of fermentation ability of microbes for corn silage inoculant. Good lactic acid bacteria were isolated from good corn silage by plating MRS agar containing 0.02% sodium azide, and assessed by growing and acid producing ability in MRS broth. Six lactic acid bacteria were selected, and were found to be Gram positive, rods and catalase negative and were identified to be lactobacillus plantarum (C3-2, B13-1, CC9-1), Lactobacillus fermentum (C11-4), Lactobacillus paracasei (B14-1), and Leuconostoc lactis (A3-1) on the basis of the biochemical characteristics and utilization of substrates. Corn was ensiled at ripen stage following treatment with selected five lactic acid bacteria, two commercial inoculant, and no additive (control). After 2 month, B13-1 and CC9-1 bacteria inoculated silage were lower pH and higher lactic acid content than others treatments. The Flieg's score and grade of B13-1 and CC9-1 bacteria treated silage were higher than commercial inoculant. According to this experiment, lactobacillus plantarum B13-1 and CC9-1 strain were recommendable for good inoculant of corn silage.

Effect of alkali pretreatment on bioconversion of waste money bill to glucose for bio-ethanol production

  • Sheikh, M. Mominul Islam;Kim, Chul-Hwan;Park, Hyun-Jin;Kim, Sung-Ho;Kim, Gyeong-Chul;Lee, Ji-Yong;Kim, Jae-Won
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.167-177
    • /
    • 2011
  • Renewable energy resources and technologies have the potential to provide long-lasting solutions of the global energy-requirements faced by the economic and environmental sectors of a nation. Therefore, waste money bills were used as renewable energy source for the production of bio-ethanol. In this study, different concentrated NaOH 0.5%. 1.0%, 2.0%, 3.0% and 0.0% (as a control) were used for 10, 20 and 30 mins at $121^{\circ}C$/15 psi in an autoclave. Saccharification and fermentation (aerobic and anaerobic) were carried out through commercial enzyme Celluclast 1.5 L, Novozymes 188 and Saccharomyces cerevisiae KCCM 11304 respectively. The results of pretreatment showed that the NaOH pre-treated substrate enhanced enzyme action and released more amount of glucose. The amount of glucose was found with the increasing concentration of NaOH and time $44996.95{\pm}6.30$, $46763.10{\pm}3.56$, $53421.32{\pm}4.72$, $63431.25{\pm}6.95$ and $56850.98{\pm}6.75\;ng/{\mu}l$ for 30 min respectively. As for bioethanol, the conversion rate of NaOH resulted $1010.08{\pm}4.71$, $1050.25{\pm}4.37$, $1109.49{\pm}4.39$, $1139.25{\pm}3.26$ and $1020.77{\pm}3.89$ ppm for aerobic; $16730.54{\pm}6.67$, $17076.45{\pm}6.25$, $17516.17{\pm}4.49$, $19782.68{\pm}6.19$ and $17973.39{\pm}7.50$ ppm for anaerobic and $18935.02{\pm}4.59$, $19895.45{\pm}5.39$, $21912.95{\pm}4.83$, $24895.21{\pm}6.72$ and $18961.21{\pm}4.90$ ppm for anaerobic condition with benzoic acid for respective condition. Thus, the results of the present work clearly revealed that with the increasing of alkali concentration might be more effective for bio-ethanol production from waste money bill, which is economic and environmental friendly.

  • PDF