• Title/Summary/Keyword: fen

Search Result 234, Processing Time 0.021 seconds

Antioxidant and Antimicrobial Activities of Camellia Oleifera Seed Oils

  • Zhou, Qing-Fen;Jia, Xue-Jing;Li, Qian-Qian;Yang, Rui-Wu;Zhang, Li;Zhou, Yong-Hong;Ding, Chun-Bang
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • The antioxidant and antimicrobial activities of Camellia oleifera seed oil were studied. Four kinds of seed oil samples were prepared, crude oil and refined oil, extracted by cold pressing method (CPC, CPR), and organic solvent extraction (OSC, OSR). Antioxidant activity analysis was measured in 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt, ferric reducing Ability of Plasma, and 2,2-diphenyl-1-picrylhydrazyl assays. Besides, the percentage of inhibition of red blood cells hemolysis induced by 2,2'-azobis(2-amidnopropane) dihydrochlorid, the lag time of LDL conjugated dienes formation in vitro, and the inhibitors of loss in tryptophan fluorescence were all used to estimate the antioxidant activity of the samples. The total phenolic contents (TPC) were detemined by Folin-Ciocalteu method. The TPC of the C. oleifera seed oils can be arranged in descending order: CPC ($1.9172{\mu}g/mL$) > OSC ($1.5218{\mu}g/mL$) > CPR ($1.0611{\mu}g/mL$) > OSR ($0.6782{\mu}g/mL$). And the oils were investigated for activity against Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger. The results showed the antioxidant activity of crude oil by cold pressing method was stronger than others, and all oils did inhibit activity of the top three bacteria expert A. niger. The further significance of the study contributes to measure the antioxidant and antimicrobial activity of the potential health benefits by the different methods of preparation and the oil of C. oleifera seeds acting as free radical scavenger, pharmaceuticals and preservatives may offer some information in medicine and cosmetic not just in food field.

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

Plate waste study among hospitalised patients receiving texture-modified diet

  • Razalli, Nurul Huda;Cheah, Chui Fen;Mohammad, Nur Mahirah Amani;Manaf, Zahara Abdul
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.655-671
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: While plate waste has been widely investigated in hospitals, there have been minimal studies specific to the texture-modified diet (TMD). This study aims to determine the percentage of plate waste among patients prescribed with TMD and its contributory factors. SUBJECTS/METHODS: This was a single-centre study conducted in the university hospital on three types of TMD (blended diet, mixed porridge, minced diet) during lunch and dinner meals. Weighing method and visual estimation method assisted by digital photograph were adopted in this study. Face to face interview was carried out to investigate on 1) the food/food service quality factors in terms of patients' satisfaction level towards sensorial quality of food and food services provided and 2) the clinical/external factors including appetite, the provision of oral nutrition support, time taking the diet, the need for feeding assistance and the length of hospital stay. RESULTS: The mean percentage of overall plate waste of 95 patients receiving TMD was high (47.5%). Blended diet was identified as the most wasted diet (65%) followed by minced diet (56%) and mixed porridge (35%). Satisfaction level among patients was moderate. Patients on TMD in general had higher satisfaction level on the aspect of food service as compared to food quality. Substantial association between sensorial qualities of food and plate waste were varied according to individual TMD type. A multiple linear regression showed that only the satisfaction level toward the aspects of appearance and variety of foods were the predictors of TMD plate waste (R2 = 0.254, P < 0.05). CONCLUSIONS: A significant relationship between the percentage of plate waste and the overall satisfaction level of patients receiving TMD suggests that vigorous strategies are needed to reduce the food waste of TMD which will lead to a better nutritional status and clinical outcomes among the patients.

Considerations to design high-pressure membrane system to produce high quality potable water with lower organic matter concentration (유기물 농도가 낮은 고품질 정수 생산을 위한 고압막여과 공정 설계 시 고려사항)

  • Jeon, Jongmin;Kim, Seong-Su;Seo, Inseok;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.473-480
    • /
    • 2020
  • High-pressure membrane system like nanofiltration(NF) and reverse osmosis(RO) was investigated as a part of water treatment processes to produce high quality potable water with low organic matter concentration through membrane module tests and design simulation. River water and sand filtration permeate in Busan D water treatment plant were selected as feed water, and NE4040-90 and RE4040-Fen(Toray Chemical Korea) were used as NF and RO membranes, respectively. Total organic carbon(TOC) concentrations of NF and RO permeates were mostly below 0.5 mg/l and the average TOC removal rates of NF and RO membranes were 93.99% and 94.28%, respectively, which means NF used in this study is competitive with RO in terms of organic matter removal ability. Different from ions rejection tendency, the TOC removal rate increases at higher recovery rates, which is because the portion of higher molecular weight materials in the concentrated raw water with increasing recovery rate increases. Discharge of NF/RO concentrates to rivers may not be acceptable because the increased TDS concentration of the concentrates can harm the river eco-system. Thus, the idea of using NF/RO concentrate as the raw water for industrial water production was introduced. The design simulation results with feed water and membranes used in this work reveal that the raw water guideline can be satisfied if the recovery rate of NF/RO system is designed below 80%.

Evaluation of Growth Characteristics and Forage Yield of Domestically Bred Silage Corn Varieties

  • Kim, Jong Geun;Yu, Young Sang;Wang, Li Li;Li, Yan Fen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.146-154
    • /
    • 2022
  • This experiment was conducted to evaluate the growth characteristics and productivity of silage corn varieties developed in Korea. Corn cultivation was carried out using the experimental field in the Pyeongchang campus of Seoul National University (550 m above sea level). There have 10 domestic cultivars (Gwangpyeongok, Dacheongok, Yanganok, Jangdaok, Cheongdaok, Daanok, Sinhwangok, Sinhwangok II, Pyeonggangok, and Hwangdaok) with one imported cultivar (P1543) which tested as a control, and randomized block design with three replications. Among the 100-grains weight of the seeds, Dacheongok was the heaviest, and the germination rate for each variety was 74.6% on average, while that of Daanok and Sinhwangok were over 90%. Sinhwangok was the fastest in tasseling and silking date. The number of days required to be silking date was as slow as 85 days in Dacheongok, Cheongdaok and Pyeonggangok, and as fast as 80 days or less in Sinhwangok, Sinhwangok II and Hwangdaok. The plant height of P1543 was the highest as 344cm, and Hwangdaok and Daanok were short. In terms of the ratio of ears, Daanok had the highest rate of 60.18%, and Jangdaok and Dacheongok had the lowest. There was no significant difference in dry matter content in stover, but P1543 was generally higher in ear and total dry matter content. The dry matter yield was highest in P1543, and the yield of TDN was significantly higher in P1543 and Yanganok. There was a significant difference in the crude protein content of ears and the dry digestibility of stems (p<0.05), while there was no significant difference in the content of each part or element. Combining the above results, Yanganok was the highest in terms of yield, and Dacheongok, Sinhwangok and Pyeonggangok were also recommended for domestically grown corn varieties in the mountainous regions of Gangwon-do.

Privacy-Preserving Key-Updatable Public Key Encryption with Keyword Search Supporting Ciphertext Sharing Function

  • Wang, Fen;Lu, Yang;Wang, Zhongqi;Tian, Jinmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.266-286
    • /
    • 2022
  • Public key encryption with keyword search (PEKS) allows a user to make search on ciphertexts without disclosing the information of encrypted messages and keywords. In practice, cryptographic operations often occur on insecure devices or mobile devices. But, these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users' keys can be updated as the system runs. Nevertheless, the existing KU-PEKS framework has some weaknesses. Firstly, it can't update the keyword ciphertexts on the storage server without leaking keyword information. Secondly, it needs to send the search tokens to the storage server by secure channels. Thirdly, it does not consider the search token security. In this work, a new PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has the ciphertext sharing function which is not supported by KU-PEKS. The security notions for KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword ciphertext privacy and the search token privacy. The experimental results and comparisons bear out that the proposed scheme is practicable.

Effects of sodium diacetate and microbial inoculants on fermentation of forage rye

  • Yan Fen Li;Eun Chan Jeong;Li Li Wang;Hak Jin Kim;Farhad Ahmadi;Jong Geun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.96-112
    • /
    • 2023
  • Rye (Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (106 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.

Comparison of Productivity and Feed Value of Silage Corn according to the Cutting Height

  • Yan Fen Li;Li Li Wang;Young Sang Yu;Xaysana Panyavong;Hak Jin Kim;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • Corn silage is extensively utilized in ruminant feeding on a global scale, with substantial research efforts directed towards enhancing its nutritional worth and managing moisture content. The purpose of this study was to assess the impact of normal cutting height and elevated cutting height on whole-crop corn silage. Corn was harvested at heights of 15 cm and 45 cm above the ground, respectively, 45 days after heading. The harvested corn was cut into 2-3 cm lengths and packed into 20-liter plastic silos in triplicate. The results showed that dry matter (DM), crude protein (CP), water soluble carbohydrates (WSC), and in vitro dry matter digestibility (IVDMD) of C45 were significantly higher than those of the control, while the neutral detergent fiber (NDF) was significantly lower in C45 (p<0.05). The C15 had higher yields than C45 (p<0.05). There was no significant difference in the total digestible nutrients (TDN) yield of whole-crop corn silage. The increase in cutting height resulted in a larger change in moisture content and NDF per centimeter. After 60 days-ensiling, C45 showed significantly lower NH3-N concentrations. Moreover, C45 had significantly higher lactic acid concentration, lactic acid/acetic acid ratio, and lactic acid bacteria count compared to the control. Mold was not detected and the yeast count was less than 2 log10 cfu/g fresh matter in both control and C45. In summary, C45 improved the feeding value and fermentation quality of whole-crop corn silage at the expense of forage productivity.

Impact of the COVID-19 vaccine booster strategy on vaccine protection: a pilot study of a military hospital in Taiwan

  • Yu-Li Wang;Shu-Tsai Cheng;Ching-Fen Shen;Shu-Wei Huang;Chao-Min Cheng
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Purpose: The global fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to widespread vaccination efforts, yet the optimal dosing schedule for SARS-CoV-2 vaccines remains a subject of ongoing research. This study aims to investigate the effectiveness of administering two booster doses as the third and fourth doses at different intervals to enhance vaccine protection. Materials and Methods: This study was conducted at a military regional hospital operated by the Ministry of National Defense in Taiwan. A cohort of vaccinated individuals was selected, and their vaccine potency was assessed at various time intervals following their initial vaccine administration. The study participants received booster doses as the third and fourth doses, with differing time intervals between them. The study monitored neutralizing antibody titers and other relevant parameters to assess vaccine efficacy. Results: Our findings revealed that the potency of the SARS-CoV-2 vaccine exhibited a significant decline 80 days after the initial vaccine administration. However, a longer interval of 175 days between booster injections resulted in significantly higher neutralizing antibody titers. The individuals who received the extended interval boosters exhibited a more robust immune response, suggesting that a vaccine schedule with a 175-day interval between injections may provide superior protection against SARS-CoV-2. Conclusion: This study underscores the importance of optimizing vaccine booster dosing schedules to maximize protection against SARS-CoV-2. The results indicate that a longer interval of 175 days between the third and fourth doses of the vaccine can significantly enhance the neutralizing antibody response, potentially offering improved protection against the virus. These findings have important implications for vaccine distribution and administration strategies in the ongoing battle against the SARS-CoV-2 pandemic. Further research and largescale trials are needed to confirm and extend these findings for broader public health implications.

Research progress on hydrogel-based drug therapy in melanoma immunotherapy

  • Wei He;Yanqin Zhang;Yi Qu;Mengmeng Liu;Guodong Li;Luxiang Pan;Xinyao Xu;Gege Shi;Qiang Hao;Fen Liu;Yuan Gao
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration.