• Title/Summary/Keyword: femtocell network

Search Result 59, Processing Time 0.021 seconds

An Efficient Femto-cell Scanning Scheme Using Network Assistance in IEEE 802.16e System (IEEE 802.16e 시스템에서 망 지원을 이용한 효율적인 펨토셀 스캐닝 방안)

  • Choi, Jae-In;Nam, Jin-Kyu;Seo, Won-Keyong;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1B
    • /
    • pp.21-28
    • /
    • 2011
  • The femtocell is a miniaturized Base Station (BS) with low-cost and low-power using general broadband access network as backhaul. It is expected not only to improve indoor coverage but also to reduce a service charge. However, in IEEE 802,16e femtocells, when the Mobile Station (MS) scans neighbor BSs for handover, it takes a long time due to too many number of femto BSs. Also the size of the neighbor advertisement message that will be periodically sent by a serving BS is increased as the number of target femto BSs for scanning increases. In this paper, we proposed an efficient femtocell scanning scheme, using a triangulation mechanism and a femto BS monitoring scheme to reduce the number of scanning operations and the size of the neighbor advertisement messages. The proposed scheme can avoid wasting air resources and reduce scanning overheads by minimal scanning operation. The simulation results showed that the proposed scheme could improve scanning performance and avoid wasting air resources, compared with the conventional scheme of the IEEE 802.16e system.

Self-Organized Resource Allocation for Femtocell Network to Mitigate Downlink Interference

  • Sable, Smita;Bae, Jinsoo;Lee, Kyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2410-2418
    • /
    • 2015
  • In this paper, we consider the femto users and their mutual interference as graph elements, nodes and weighted edges, respectively. The total bandwidth is divided into a number of resource blocks (RBs) and these are assigned to the femto user equipment (FUEs) using a graph coloring algorithm. In addition, resources blocks are assigned to the femto users to avoid inter-cell interference. The proposed scheme is compared with the traditional scheduling schemes in terms of throughput and fairness and performance improvement is achieved by exploiting the graph coloring scheme.

Interference Management with Block Diagonalization for Macro/Femto Coexisting Networks

  • Jang, Uk;Cho, Kee-Seong;Ryu, Won;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.297-307
    • /
    • 2012
  • A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co-channel interference. Utilizing the advantage of a multiple-input multiple-output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single-cell block diagonalization, in a cooperative manner. Since interference from clustered-FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.

Interference Reduction Scheme for Mobile WiMAX in an Indoor environment (실내 환경의 Mobile WiMAX 시스템을 위한 간섭 완화 기술에 대한 연구)

  • Oh, Yong-Il;Ha, Kwang-Jun;Koo, Sung-Wan;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.454-458
    • /
    • 2008
  • This article describes an interference reduction scheme for Mobile WiMAX in an indoor environment. The feasibility of user deployed femtocells in the same frequency channel as an existing macro cell network is investigated. One of the important requirements for co-channel operation of femtocells such as auto-configuration and self optimization are discussed. In femtocell deployments, leakage of the pilot signal to the outside of a house can result of the higher number of mobility events caused by passing user of macrocell. This interference effect can be minimized by reducing the pilot power using proper scheme. This paper introduces existing auto-configuration method of power control and proposed interference reduction scheme using power control for Mobile WiMAX in an indoor environment.

  • PDF

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Game Theoretic Approach for Joint Resource Allocation in Spectrum Sharing Femtocell Networks

  • Ahmad, Ishtiaq;Liu, Shang;Feng, Zhiyong;Zhang, Qixun;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.627-638
    • /
    • 2014
  • In this paper, we study the joint price and power allocation in spectrum sharing macro-femtocell networks. The proposed game theoretic framework is based on bi-level Stackelberg game where macro base station (MBS) works as a leader and underlaid femto base stations (FBSs) work as followers. MBS has fixed data rate and imposes interference price on FBSs for maintaining its data rate and earns revenue while FBSs jointly adjust their power for maximizing their data rates and utility functions. Since the interference from FBSs to macro user equipment is kept under a given threshold and FBSs compete against each other for power allocation, there is a need to determine a power allocation strategy which converges to Stackelberg equilibrium. We consider two cases for MBS power allocation, i.e., fixed and dynamic power. MBS can adjust its power in case of dynamic power allocation according to its minimum data rate requirement and number of FBSs willing to share the spectrum. For both cases we consider uniform and non-uniform pricing where MBS charges same price to all FBSs for uniform pricing and different price to each FBS for non-uniform pricing according to its induced interference. We obtain unique closed form solution for each case if the co-interference at FBSs is assumed fixed. And an iterative algorithm which converges rapidly is also proposed to take into account the effect of co-tier interference on interference price and power allocation strategy. The results are explained with numerical simulation examples which validate the effectiveness of our proposed solutions.

Dynamic Inter-Cell Interference Avoidance in Self-Organizing Femtocell Networks (자가구성 펨토셀의 동적 셀간간섭 회피 기법)

  • Park, Sang-Kyu;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.259-266
    • /
    • 2011
  • Femtocells are expected as the surest way to increase the system capacity with higher-quality links and more spatial reuse in future networks. In spite of their great potential, the system capacity is highly susceptible to network density because a large portion of users are exposed to inter-cell interference (ICI). In this work, we proposed a dynamic interference avoidance scheme in densely deployed cell environments. Our proposed DDIA (Distributed Dynamic ICI Avoidance) scheme not only works in a fully distributed manner, but also controls interference link connectivity of users with high agility so that it is suited for self-organizing networks (SONs). We introduced the concept of ICI-link and two-tier scheduling in designing the DDIA scheme. To avoid ICI without any central entity, our scheme tries to harmonize all base stations (BSs) with users adaptively. Through extensive simulations, it was shown that our proposed scheme improves the throughput of users by more than twice on average compared to the frequency reuse factor 1 scheme, who are exposed to ICI while maintaining or even improving overall network performance. Our scheme operates well regardless of network density and topology.

Spectrum Share Allocation Revenue Optimization Algorithm of Femtocell in the Heterogeneous Network (이종네트워크에서 펨토셀의 스펙트럼 공유할당 비용 최적화 알고리즘)

  • Park, Sang Hyuk;Myeong, Seayoung;Rajeev, Rajeev;Cuma, Cuma;Won, Jongho;Bate, Bate;Kim, Gyeongho;Lee, Yeonwoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.268-270
    • /
    • 2013
  • 본 논문에서는 최근 주파수 자원에 대한 수요가 급증하면서 효율적으로 주파수를 이용하기 위해 주파수 공유를 하면서 생길 수 있는 비용문제의 최고의 이득을 발생시킬 수 있도록 하기 위하여 이종네크워크(Heterogeneous Network)에서 매크로셀과 펨토셀 환경에서 스펙트럼 공유에 있어서 매크로셀이 사용하지 않는 스펙트럼을 펨토셀에 공유해줌으로써 이득을 취할 수 있는데 이러한 이득에 있어서 최고의 이득을 발생시킬 수 있도록 하기 위하여 펨토셀의 스펙트럼 공유당 비용 최적화 알고리즘을 제안 하였다.

Combinatorial Auction-Based Two-Stage Matching Mechanism for Mobile Data Offloading

  • Wang, Gang;Yang, Zhao;Yuan, Cangzhou;Liu, Peizhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2811-2830
    • /
    • 2017
  • In this paper, we study the problem of mobile data offloading for a network that contains multiple mobile network operators (MNOs), multiple WiFi or femtocell access points (APs) and multiple mobile users (MUs). MNOs offload their subscribed MUs' data traffic by leasing the unused Internet connection bandwidth of third party APs. We propose a combinatorial auction-based two-stage matching mechanism comprised of MU-AP matching and AP-MNO matching. The MU-AP matching is designed to match the MUs to APs in order to maximize the total offloading data traffic and achieve better MU satisfaction. Conversely, for AP-MNO matching, MNOs compete for APs' service using the Nash bargaining solution (NBS) and the Vickrey auction theories and, in turn, APs will receive monetary compensation. We demonstrated that the proposed mechanism converges to a distributed stable matching result. Numerical results demonstrate that the proposed algorithm well capture the tradeoff among the total data traffic, social welfare and the QoS of MUs compared to other schemes. Moreover, the proposed mechanism can considerably offload the total data traffic and improve the network social welfare with less computation complexity and communication overhead.

Cell Management and Handover Method in IEEE 802.16e-based Femto-cell Systems (펨토셀 시스템의 기지국간 셀 관리 및 핸드오버 방법)

  • Cho, Kwang-Hyun;Kim, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.240-249
    • /
    • 2011
  • In this paper, we consider a cell management and handover method in an IEEES02.16e based femto-cell systems. In a femto-cell system, Mobile Stations (MS) and Base Stations (BS) are temporarily overloaded during the process of MOB_NBR-ADV message because it includes huge information of macro-cell and a large number of femto-cells. Also, MS can be handover into another cell frequently, i.e. ping-pong phenomenon, if it is located in a overlapped cell area. In a femtocell system, so-called ping-pong phenomenon will burden the network opreation. In this paper, we propose construction of MOB_NBR-ADV message and it provides fast scanning and efficent handover by means of preselecting the candidate target femto-cells. Also, an adaptive method of hysteresis margin for handover is proposed. The simulation results show that the proposed schemes improve the MS's handover-related performance in terms of scanning power and scanning time compared with the conventional managements scheme of femto-cell systems.