• Title/Summary/Keyword: femtocell network

Search Result 59, Processing Time 0.025 seconds

Fractional Frequency Reuse (FFR) Usability Improvement in LTE Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.292-298
    • /
    • 2022
  • Femtocell networks can be a potential method for increasing the capacity of LTE networks, especially in indoor areas. However, unplanned deployment of femtocells results in co-tier interference and cross-tier interference problems. The interference reduces the advantages of implementing femtocell networks to a certain extent. The notion of Fractional Frequency Reuse (FFR) is proposed in order to reduce the impact of interference on the system's performance. In this paper, a dynamic approach for efficiently partitioning the spectrum is suggested. The goal is to enhance the capacity of femtocells, which will improve the performance of the system. The suggested strategy allocates less resources to the macrocell portion of the network, which has a greater number of femtocells deployed to maximize the utilization of available resources for femtocell users. The spectrum division would be dynamic. The proposed strategy is evaluated through a simulation using MATLAB tool. In conclusion, the results showed that the proposed scheme has the potential to boost the system's capacity.

Development of Femtocell Simulator Based on LTE Systems for Interference and Performance Evaluation (간섭 및 성능 분석을 위한 LTE 시스템 기반 펨토셀 시뮬레이터 개발)

  • Kim, Chang-Seup;Choi, Bum-Gon;Koo, Bon-Tae;Lee, Mi-Young;Chung, Min-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Recently, femtocell has been concerned as one of effective solutions to relieve shadow region and provide high quality services to users in indoor environments. Even though femtocell offers various benefits to cellular operators and users, many technical issues, such as interference coordination, network synchronization, self-configuration, self-optimization, and so on, should be solved to deploy the femtocell in current network. In this paper, we develop a simulator for evaluating performance of long term evolution (LTE) femtocell systems under various interference scenarios. The simulator consists of a main-module and five sub-modules. The main-module connects and manages five sub-modules which have the functionality managing user mobility, packet scheduling, call admission control, traffic generation, and modulation and coding scheme (MCS). To provide user convenience, the simulator adopts graphical user interface (GUI) which can observes simulation results in real time. We expect that this simulator can contribute to developing effective femtocell systems by supporting a tool for analyzing the effect of interference between macrocell and femtocell.

Auto-Configuration Downlink Transmission Power Approach For Femtocell Base Station

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2022
  • Femtocells are being incorporated into heterogeneous networks in order to increase the network capacity. However, intensive deployment of femtocells results in undesired interference, which lowers the system's performance. Controlling the femtocell transmission power is one of of the aspects that can be addressed in order to mitigate the negative effects of the interference. It may also be utilized to facilitate the auto-configuration of the network's conductance, if necessary. This paper proposes the use of an auto-configuration technique for transmission power. The suggested technique is based on the transmission power of macrocells and the coverage provided by femtocells. The simulation findings show that the network's capacity has increased, and the amount of interference has decreased.

HeNB-Aided Virtual-Handover for Range Expansion in LTE Femtocell Networks

  • Tang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.312-320
    • /
    • 2013
  • Home evolved Node-B (HeNB), also called a femtocell or a femto base station, is introduced to provide high data rate to indoor users. However, two main problems arise in femtocell networks: (1) Small coverage area of HeNB, which results in limited cell-splitting gain and ping-pong handover (HO) problems and (2) high inter-femtocell interference because HeNBs may be densely deployed in a small region. In this study, an efficient cooperation mechanism called an HeNB-aided virtual-HO (HaVHO) scheme is proposed to expand the coverage area of femtocells and to reduce inter-femtocell interference. The cooperation among neighbor HeNBs is exploited in HaVHO by enabling an HeNB to relay the data of its neighbor HeNB without an HO. The HaVHO procedure is compatible with the existing long term evolution specification, and the information exchange overhead in HaVHO is relatively low. To estimate the signal to interference plus noise ratio improvement, the area average channel state metric is proposed, and the amount of user throughput enhancement by HaVHO is derived. System-level simulation shows that HaVHO has a better performance than the other four schemes, such as lesser radio link failure, lesser ping-pong handover, lesser short-stay handover, and higher user throughput.

Clustering Based Adaptive Power Control for Interference Mitigation in Two-Tier Femtocell Networks

  • Wang, Hong;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1424-1441
    • /
    • 2014
  • Two-tier femtocell networks, consisting of a conventional cellular network underlaid with femtocell hotspots, play an important role in the indoor coverage and capacity of cellular networks. However, the cross- and co-tier interference will cause an unacceptable quality of service (QoS) for users with universal frequency reuse. In this paper, we propose a novel downlink interference mitigation strategy for spectrum-shared two-tier femtocell networks. The proposed solution is composed of three parts. The first is femtocells clustering, which maximizes the distance between femtocells using the same slot resource to mitigate co-tier interference. The second is to assign macrocell users (MUEs) to clusters by max-min criterion, by which each MUE can avoid using the same resource as the nearest femtocell. The third is a novel adaptive power control scheme with femtocells downlink transmit power adjusted adaptively based on the signal to interference plus noise ratio (SINR) level of neighboring users. Simulation results show that the proposed scheme can effectively increase the successful transmission ratio and ergodic capacity of femtocells, while guaranteeing QoS of the macrocell.

Utility-based Rate Allocation Scheme for Mobile Video Streaming over Femtocell Networks

  • Quan, Shan Guo;Xu, Jian;Kim, Young-Yong
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.151-158
    • /
    • 2009
  • This paper proposes a utility-based data rate allocation algorithm to provide high-quality mobile video streaming over femtocell networks. We first derive a utility function to calculate the optimal data rates for maximizing the aggregate utilities of all mobile users in the femtocell. The total sum of optimal data rates is limited by the link capacity of the backhaul connections. Furthermore, electromagnetic cross-talk poses a serious problem for the backhaul connections, and its influence passes on to mobile users, as well as causing data rate degradation in the femtocell networks. We also have studied a fixed margin iterative water-filling algorithm to achieve the target data rate of each backhaul connection as a counter-measure to the cross-talk problem. The results of our simulation show that the algorithm is capable of minimizing the transmission power of backhaul connections while guaranteeing a high overall quality of service for all users of the same binder. In particular, it can provide the target data rate required to maximize user satisfaction with the mobile video streaming service over the femtocell networks.

LTE Femtocell Network Configuration and an Off-Load Scheme According to Traffic Type within Smart Shipyard Area (스마트 조선소내 LTE 펨토셀 네트워크 구성과 트래픽 종류에 따른 오프로드 방식)

  • Kim, Su-Hyun;Jung, Min-A;Lee, Seong Ro;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.667-673
    • /
    • 2014
  • In a smart shipyard area, it is possible to integrate a variety of ship modules from separate sites into a final ship construction by using mobile applications. In this paper, we proposed the LTE femtocell network configuration which is applicable to sub shipyard, the traffic exchange method with shipyard headquarter and offload method to separate the general traffic. We defined the mode change in a femtocell gateway for supporting offload for general traffic between the main server in shipyard headquarter and sub shipyard, the offload data managements and message definition. We check the transmitted/received message flow in the wireless link, and consider the performance of the proposed method using state the transition diagram. It is expected that our results can improve the productivity within a smart shipyard by mobile communications and LTE femtocell network.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

A Distributed Power Control Algorithm for Data Load Balancing with Coverage in Dynamic Femtocell Networks (다이나믹 펨토셀 네트워크에서 커버리지와 데이터 부하 균형을 고려한 기지국의 파워 조절 분산 알고리즘)

  • Shin, Donghoon;Choi, Sunghee
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2016
  • A femtocell network has been attracting attention as a promising solution for providing high data rate transmission over the conventional cellular network in an indoor environment. In this paper, we propose a distributed power control algorithm considering both indoor coverage and data load balancing in the femtocell network. As data traffic varies by time and location according to user distribution, each femto base station suffers from an unbalanced data load, which may degrade network performance. To distribute the data load, the base stations are required to adjust their transmission power dynamically. Since there are a number of base stations in practice, we propose a distributed power control algorithm. In addition, we propose the simple algorithm to detect the faulty base station and to recover coverage. We also explain how to insert a new base station into a deployed network. We present the simulation results to evaluate the proposed algorithms.

Dynamic Access and Power Control Scheme for Interference Mitigation in Femtocell Networks

  • Ahmed, Mujeeb;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4331-4346
    • /
    • 2015
  • The femtocell network, which is designed for low power transmission and consists of consumer installed small base stations, coexists with macrocells to exploit spatial reuse gain. For its realization, cross-tier interference mitigation is an important issue. To solve this problem, we propose a joint access and power control scheme that requires limited information exchange between the femto and macro networks. Our objective is to maximize the network throughput while satisfying each user's quality of service (QoS) requirement. To accomplish this, we first introduce two distributed interference detection schemes, i.e., the femto base station and macro user equipment based schemes. Then, the proposed scheme dynamically adjusts the transmission power and makes a decision on the access mode of each femto base station. Through extensive simulations, we show that the proposed scheme outperforms earlier works in terms of the throughput and outage probability.