• Title/Summary/Keyword: feedforward technique

Search Result 97, Processing Time 0.019 seconds

A Feedforward Linear Power Amplifier using Error Feedback Technique (에러 피드백 기술을 이용한 피드 포워드 선형 전력 증폭기)

  • 김완종;조경준;김종헌;김남영;이종철;이병제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1407-1413
    • /
    • 2000
  • This paper presents a feedforward linear power amplifier (LPA) using error feedback technique to achieve low intermodulation distortions(IMD) of power amplifiers for base stations. Especially, the proposed linear power amplifier is applied to feedforward technique combined with error feedback technique, which has no loss of amplifier gain unlike typical feedback technique. The proposed LPA is designed by using HP ADS ver. 1.3, fabricated. When two-tone signals at 1850 MHz and 1851.25 MHz with -7 dBm/tone from synthesizers are injected into the main power amplifier with gain of 28 dB and P1dB of 1W, the proposed LPA could reduce more than 35 dB.

  • PDF

A Novel Design of Frequency Multiplier Using Feedforward Technique and Defected Ground Structure (Feedforward와 Defected Ground Structure를 이용한 주파수 체배기 설계)

  • Park Sang-Keun;Lim Jong-Sik;Jeong Yong-Chae;Kim Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.725-731
    • /
    • 2006
  • A novel design of frequency multiplier using a feedforward technique and a defected ground structure(DGS) is proposed. The feedforward loop in the proposed frequency multiplier suppresses the fundamental component $(f_0)$, the dumb-bell or spiral shaped DGS diminish unwanted harmonics such as second, third and fourth. Due to the combination of the feedforward structure and the DGS, only the multiplied frequency component$(2f_0,\;3f_0,\;4f_0)$ appears at the output port and the other unwanted components are suppressed excellently. The frequency multiplier is designed at 1 GHz $(f_0)$, by the proposed technique and measured. The measured output power of $2f_0,\;3f_0$ and $4f_0$ is -2.59 dBm, -5.36dBm and -4.57dBm, respectively, when the input power is 0dBm.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Theory (MFXLMS 알고리즘을 이용한 전자기배어링계의 외란 보상 제어기 - 이론)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • In this paper, a disturbance feedforward compensator design technique is proposed for an active magnetic bearing system subject to base motion for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feedforward compensator design based on adaptive estimation by means of the Multiple Filtered-x least mean square(MFXLMS) algorithm is proposed. The performance and the effectiveness of the proposed technique will be presented in the succeeding paper in which the proposed technique is applied to a 2-DOF active magnetic bearing system subject to base motion.

Adaptive Control Method for a Feedforward Amplifier

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.108-112
    • /
    • 2003
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate the performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the performance within a little error bounds. In this paper, an adaptive control method, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.

  • PDF

Performance Improvement of DC-link Control for a Dynamic Voltage Restorer with Power Feedforward Compensation (전력 전향보상을 통한 동적전압보상기 직류단 전압 제어의 성능 향상)

  • Ji, Kyun Seon;Jou, Sung Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1297-1305
    • /
    • 2015
  • This paper proposes a power feedforward technique for the performance improvement of DC-link voltage control in the dynamic voltage restorer (DVR). The DC-link Voltage is able to be unstable for an instant owing to any change in the load and voltage sag. The distortion of the DC-link voltage leads to the negative influence on the performance of DVR. To mitigate the distortion of the DC-link voltage, the power feedforward component is calculated by the load power and the grid voltage, and then it is added to the reference current of the conventional DC-link voltage controller. By including output power feedforward component on the DC-link controller, the DC-link voltage can settle down more quickly than when the conventional DC-link voltage controller applied. The proposed technique was validated through the simulation and experimental results.

A Novel Frequency Doubler using Feedforward Structure and DGS Microstrip for Fundamental and High-Order Components Suppression (Feedforward 구조와 DGS를 이용하여 기본 신호와 3차 이상의 고조파 신호를 제거한 2차 주파수 체배기 설계)

  • 황도경;임종식;정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.513-520
    • /
    • 2003
  • In this paper, a novel design concept of frequency doubler using feedforward technique and DGS microstrip line is proposed. The feedforward loop plays a role of fundamental frequency suppression and DGS microstrip line suppresses over the 3rd order harmonic components. By using this new concept, the high suppression for the undesired signals could be achieved easily. The proposed technique is experimentally demonstrated in 1.87 GHz-to-3.74 GHz frequency doubler. The output power of -3 dBm at the frequency of 3.74 GHz(2f$\_$0/) is measured with 42.9 dB suppression of the fundamental frequency signal(f$\_$0/), 20.2 dB suppression of the 3rd harmonic signal(3f$\_$0/) and B9.7 dB suppression of the 4th harmonic signal(4f$\_$0/). The conversion loss of -2.34 dB ∼ -5.8 dB at the bandwidth of 100 MHz, the phase noise of -97.51 dB/Hz(@10 kHz) were measured.

Active Noise Transmission Control Through a Panel Structure Using a Frequency Domain Identification Method (주파수 영역 모델 방법을 이용한 평판 구조물의 능동 소음전달 제어)

  • Kim, Yeung-Shik;Kim, In-Soo;Moon, Chan-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.71-81
    • /
    • 2001
  • This paper analyzes the effectiveness of minimizing vibration and sound transmission on/through a thin rectangular plate by both feedback control and hybrid control which combines adaptive feedforward control with a feedback loop. An experimental system identification technique using the matrix-fractional curve-fitting of the frequency response data is introduced for complex shaped structures. This identification technique reduces the model order o the MIMO(Multi-Input Multi-Output) system which simplifies the practical implementation. The adaptive feedforward control uses a Multiple filtered-x LMS(Least Mean Square) algorithm and the feedback control uses a multivariable digital LQG(Linear Quadratic Gaussian) algorithm. Experimental results show that an effective reduction of sound transmission is achieved by the hybrid control scheme when both vibration and noise measurement signals are incorporated in the controller.

  • PDF

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Adaptive Control Method for a Feedforward Amplifier (피드포워드 증폭기의 적응형 제어 방법)

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2004
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate its performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the desired performance within a little error bounds. In this paper, an adaptive control method using the steepest descent algorithm, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.