• Title/Summary/Keyword: feedback-linearization

Search Result 341, Processing Time 0.02 seconds

A Nonlinear Speed Control for a Permanent Magnet Synchronous Motor Using a Simple Disturbance Estimation Technique (외란 관측기법을 이용한 영구자석형 동기전동기의 비선형 속도 제어)

  • Lee Na-Young;Kim Kyoung-Hwa;Yoon Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • 본 논문에서는 간단한 외란 관측 기법을 이용한 영구자 석형 동기 전동기(Permanent Magnet Synchronous Motor: PMSM)의 비선형 속도 제어 기법이 제안된다. 피드백 선형화 (feedback linearization) 기법을 이용함으로써 비선형 요소가 효과적으로 제거되고 출력 오차 동특성을 선형 제어 기법에 기반 하여 설정할 수 있다. 그리고 파라미터 변동에 의한 비선형 외란을 제거하기 위해 본 논문에서는 외란 관측 기법을 이용한다. 제안한 관측기를 이용한 비선형 속도 제어 알고리즘이 파라미터 변동에 대해 강인한 제어 특성을 가짐을 시뮬레이션으로 확인하였다.

  • PDF

Control of a Ball and Beam System using Switching Control Method (스위칭 제어 기법을 이용한 볼-빔 시스템의 제어)

  • Lee, Kyung-Tae;Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.72-81
    • /
    • 2017
  • We propose a switching control scheme for the control of a ball and beam system. It was reported in [4] that a ball and beam system is a nonlinear system which has an ill-defined relative degree. So, the traditional control approaches have been mostly either Jacobian-based control or approximate input-output linearized control in nature. In this paper, motivated by [7], we combine these two traditional control approaches and operate each controller via a pre-designed switching logic so that the improved control result can be obtained without any excessive use of control input. Switching algorithm is developed based on both analysis and actual experimental observation. We verify the effectiveness of our proposed controller via actual experimental results.

High-linearity enhancement of optical transmitter using optoelectronic predistortion method (광전자 프리디스토션 기법을 적용한 광 송신기의 높은 선형성 향상 특성)

  • Lee, Tae-Kyeong;Moon, Yon-Tae;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.296-299
    • /
    • 2008
  • 최근 통신시스템과 핸드폰, PDA등의 통신기기들의 발전에 따라 사용자들은 높은 데이터 전송률과 고속의 통신서비스를 요구하고 있다. 이러한 상황에서 유 무선 통합 시스템인 Radio-over-Fiber(RoF) 시스템은 그 대안으로 대두되고 있다. 본 논문에서는 광전자소자를 선 왜곡 방식에 적용하여 광 송신기의 선형성을 향상시키는 방법을 제안하였다. 선 왜곡 방식은 두 개의 루프로 구성되어 있으며, 광 부품인 레이저 다이오드와 포토 다이오드 그리고 RF 부품인 위상변위기, 감쇄기, RF 결합/분배기, RF 증폭기를 사용하였다. 메인 루프에서 주 레이저 다이오드의 비선형성에 의해 발생된 왜곡신호성분은 보조 루프에서 부 레이저 다이오드를 이용하여 추출된 선 왜곡신호에 의해서 제거된다. 제안된 선형화 기법을 적용하여 2.4 GHz에서 선형화 기법을 적용하기 전보다 3차 상호변조 왜곡성분이 약 30dB 향상된 결과를 얻었다.

  • PDF

Model Following Sliding-Mode Control of a Six-Phase Induction Motor Drive

  • Abjadi, Navid R.;Markadeh, Gholamreza Arab;Soltan, Jafar
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.694-701
    • /
    • 2010
  • In this paper an effective direct torque control (DTC) and stator flux control is developed for a quasi six-phase induction motor (QIM) drive with sinusoidally distributed windings. Combining sliding-mode (SM) control and adaptive input-output feedback linearization, a nonlinear controller is designed in the stationary reference frame, which is capable of tracking control of the stator flux and torque independently. The motor controllers are designed in order to track a desired second order linear reference model in spite of motor resistances mismatching. The effectiveness and capability of the proposed method is shown by practical results obtained for a QIM supplied from a voltage source inverter (VSI).

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.

GWO-based fuzzy modeling for nonlinear composite systems

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.513-521
    • /
    • 2023
  • The goal of this work is to create a new and improved GWO (Grey Wolf Optimizer), the so-called Robot GWO (RGWO), for dynamic and static target tracking involving multiple robots in unknown environmental conditions. From applying ourselves with the Gray Wolf Optimization Algorithm (GWO) and how it works, as the name suggests, it is a nature-inspired metaheuristic based on the behavior of wolf packs. Like other nature-inspired metaheuristics such as genetic algorithms and firefly algorithms, we explore the search space to find the optimal solution. The results also show that the improved optimal control method can provide superior power characteristics even when operating conditions and design parameters are changed.

Design and DSP-based Implementation of Robust Nonlinear Speed Control of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 강인 비선형 속도제어기의 설계 및 DSP에 기반한 구현)

  • 백인철;김경화;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • A design and DSP-based implementation of robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) under the unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the MIT rule. For the disturbances or quickly varying parameters, a quasilinearized and decoupled model which includes the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller which employs Proportional plus Derivative(PD) control. To show the validity of the proposed scheme, simulations and DSP-based experimental works are carried out and compared with the conventional control scheme.

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Adaptive Nonlinear Control of Helicopter Using Neural Networks (신경회로망을 이용한 헬리콥터 적응 비선형 제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2004
  • In this paper, the helicopter flight control system using online adaptive neural networks which have the universal function approximation property is considered. It is not compensation for modeling errors but approximation two functions required for feedback linearization control action from input/output of the system. To guarantee the tracking performance and the stability of the closed loop system replaced two nonlinear functions by two neural networks, weight update laws are provided by Lyapunov function and the simulation results in low speed flight mode verified the performance of the control system with the neural networks.

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.