DOI QR코드

DOI QR Code

GWO-based fuzzy modeling for nonlinear composite systems

  • ZY Chen (School of Science, Guangdong University of Petrochemical Technology) ;
  • Yahui Meng (School of Science, Guangdong University of Petrochemical Technology) ;
  • Ruei-Yuan Wang (School of Science, Guangdong University of Petrochemical Technology) ;
  • Timothy Chen (California Institute of Technology)
  • Received : 2021.10.31
  • Accepted : 2023.04.24
  • Published : 2023.05.25

Abstract

The goal of this work is to create a new and improved GWO (Grey Wolf Optimizer), the so-called Robot GWO (RGWO), for dynamic and static target tracking involving multiple robots in unknown environmental conditions. From applying ourselves with the Gray Wolf Optimization Algorithm (GWO) and how it works, as the name suggests, it is a nature-inspired metaheuristic based on the behavior of wolf packs. Like other nature-inspired metaheuristics such as genetic algorithms and firefly algorithms, we explore the search space to find the optimal solution. The results also show that the improved optimal control method can provide superior power characteristics even when operating conditions and design parameters are changed.

Keywords

Acknowledgement

The authors are grateful for the research grants given to Ruei-Yuan Wang from the Projects of Talents Recruitment of GDUPT, Peoples R China under Grant NO. 2019rc098, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China. as well as to the anonymous reviewers for constructive suggestions.

References

  1. Abbassi, Y., Ait-Amirat, Y. and Outbib, R. (2015), "Nonlinear feedback control and trajectory tracking of vehicle", Int. J. Sys. Sci., 46, 2873-2886. https://doi.org/10.1080/00207721.2014.880195. 
  2. Akbari, A. and Lohmann, B. (2010), "Output feedback H ∞/GH 2 preview control of active vehicle suspensions: a comparison study of LQG preview", Vehicle Sys. Dyn., 48, 1475-1494. https://doi.org/10.1080/00423110903509327. 
  3. Ban, Y., Liu, M., Wu, P., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Depth estimation method for monocular camera defocus images in microscopic scenes", Electronics, 11(13), 2012. https://doi.org/10.3390/electronics11132012. 
  4. Bartoszewicz, A. and Lesniewski, P. (2014), "Reaching law approach to the sliding mode control of periodic review inventory systems", IEEE Transactions Autom. Sci. Eng., 11, 810-817. https://doi.org/ 10.1109/TASE.2014.2314690. 
  5. Basin, M.V., Rodriguez-Ramirez, P.C., Ferrara, A. and CalderonAlvarez, D. (2012), "Sliding mode optimal control for linear systems", J. Frankl. Inst., 349, 1350-1363, https://doi.org/10.1016/j.jfranklin.2011.05.010. 
  6. Bououden, S., Chadli, M. and Karimi, H.R. (2016), "A robust predictive control design for nonlinear active suspension systems", Asian J. Control, 18, 122-132. https://doi.org/10.1002/asjc.1180. 
  7. Chen, C., Chiang, W.L. and Hsiao F.H. (2004), "Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems", Math. Comput. Simulat., 66, 523-537. https://doi.org/10.1016/j.matcom.2004.04.001. 
  8. Chen, C., Shen, C., Chen, C. and Cheng, M. (2010) "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Comput., 27(2), 186-204. https://doi.org/10.1108/02644401011022364. 
  9. Chen, C.W. (2006), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw., 37(9), 624-629. https://doi.org/10.1016/j.advengsoft.2005.12.002. 
  10. Chen, C.W. (2009), "Modeling and control for nonlinear structural systems via a NN-based approach", Expert Syst. Appl., 36(3), 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062. 
  11. Chen, C.W. (2009), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simulat., 80(2), 402-426. https://doi.org/10.1016/j.matcom.2009.08.001. 
  12. Chen, C.W. (2010), "Application of fuzzy-model-based control to nonlinear structural systems with time delay: an LMI method", J. Vib. Control, 16(11), 1651-1672. https://doi.org/10.1177/1077546309104185. 
  13. Chen, C.W. (2010), "Modeling and fuzzy PDC control and its application to an oscillatory TLP structure", Math. Probl. Eng., 2010, 120403. https://doi.org/10.1155/2010/120403. 
  14. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlinear Dyn., 76, 23-31. https://doi.org/10.1007/s11071-013-0869-9. 
  15. Chen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear Dyn., 76, 13-22. https://doi.org/10.1007/s11071-013-0841-8. 
  16. Chen, C.W., Chiang, W.L., Tsai, C.H., Chen, C.Y and Wang, M.H. (2006), "Fuzzy Lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tools, 15(2), 163-171. https://doi.org/10.1142/S0218213006002618. 
  17. Chen, C.W., Lin, C.L., Tsai, C.H., Chen, C.Y. and Yeh, K. (2007), "A novel delay-dependent criterion for time-delay T-S fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell., 16(3), 545-552. https://doi.org/10.1142/S0218213007003400. 
  18. Chen, C.W., Yeh, K. and Liu, K.F.R. (2009), "Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation", Int. J. Uncertainty Fuzziness Knowledge- Based Syst., 17(5), 705-727. https://doi.org/10.1142/S0218488509006224. 
  19. Chen, C.W., Yeh, K., Chiang, W.L., Chen, C.Y. and Wu D.J. (2007), "Modeling, H∞ control and stability analysis for structural systems using takagi-sugeno fuzzy model", J. Vib. Control, 13(11), 1519-1534. https://doi.org/10.1177/1077546307073690. 
  20. Chen, P.C., Chen, C.W. and Chiang, W.L. (2008), "GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems", Math. Probl. Eng., 2008, 325859. https://doi.org/10.1155/2008/325859. 
  21. Chen, P.C., Chen, C.W. and Chiang, W.L. (2009), "GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems", Expert Syst. Appl., 36(3), 5872-5879. https://doi.org/10.1016/j.eswa.2008.07.003. 
  22. Chen, P.C., Chen, C.W., Chiang, W.L. and Lo, D.C. (2011), "GAbased decoupled adaptive FSMC for nonlinear systems by a singular perturbation scheme", Neural Comput. Appl., 20, 517-526. https://doi.org/10.1007/s00521-011-0540-7. 
  23. Chen, P.C., Chen, C.W., Chiang, W.L. and Yeh, K. (2009), "A novel stability condition and its application to GA-based fuzzy control for nonlinear systems with uncertainty", J. Marine Sci. Tech., 17(4), 6. https://doi.org/10.51400/2709-6998.1985. 
  24. Chen, P.Y. and Yu, H.M. (2014), "Foundation settlement prediction based on a novel NGM model", Math. Probl. Eng., 2014, 242809. https://doi.org/10.1155/2014/ 242809. 
  25. Chen, R.T., Rubanova, Y., Bettencourt, J. and Duvenaud, D.K. (2018), "Neural ordinary differential equations", Neural Info. Proces. Sys., 31, 6571-6583. 
  26. Chen, T., Chen, C.Y.J., Huang, Y.C., Hung, C.C., Frias, S. and Muhammad, J.A. (2021), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., Int. J., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917. 
  27. Chen, Y., Chen, Z., Guo, D., Zhao, Z., Lin, T. and Zhang, C. (2022), "Underground space use of urban built-up areas in the central city of Nanjing: Insight based on a dynamic population distribution", Underground Space, 7(5), 748-766. https://doi.org/10.1016/j.undsp.2021.12.006 
  28. Chen, Z.Y., Meng, Y., Wang, R.Y., Peng, S.H., Yang, Y. and Chen, T. (2022), "Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm", Steel Compos. Struct., 42(5), 591-598. 
  29. Chen, Z.Y., Peng, S.H., Meng, Y., Wang, R.Y., Fu, Q. and Chen, T. (2022), "Composite components damage tracking and dynamic structural behaviour with AI algorithm", Steel Compos. Struct., 42(2), 151-159. 
  30. Chen, Z.Y., Wang, R.Y., Jiang, R. and Chen, T. (2022), "LDI NN auxiliary modeling and control design for nonlinear systems", Smart Struct. Syst., 29(5), 693-703. 
  31. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "A novel smart criterion of grey-prediction control for practical applications", Smart Struct. Syst., Int. J., 31(1), 69-78. 
  32. Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech. Int. J., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131. 
  33. Fu, Q., Gu, M., Yuan, J. and Lin, Y. (2022), "Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway", Buildings, 12(11), 1982. https://doi.org/10.3390/buildings12111982. 
  34. Gu, Q., Tian, J., Yang, B., Liu, M., Gu, B., Yin, Z. and Zheng, W. (2023), "A novel architecture of a six degrees of freedom parallel platform", Electronics, 12(8). https://doi.org/10.3390/electronics12081774. 
  35. Hong, Y., Yao, M. and Wang, L. (2023), "A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling", Comput. Geotech., 157, 105301. https://doi.org/10.1016/j.compgeo.2023.105301. 
  36. Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D. and Chiang, W.L. (2005), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Transactions Circuits Syst. I: Regular Papers, 52(9), 1883-1893. https://doi.org/10.1109/TCSI.2005.852492. 
  37. Hsiao, F.H., Chen, C.W., Wu, Y.H. and Chiang, W.L. (2005), "Fuzzy controllers for nonlinear interconnected TMD systems with external force", J. Chin. Inst. Eng., 28(1), 175-181. https://doi.org/10.1080/02533839.2005.9670984. 
  38. Hsiao, F.H., Chiang, W.L., Chen, C.W., Xu, S.D. and Wu, S.L. (2005), "Application and robustness design of fuzzy controller for resonant and chaotic systems with external disturbance", Int. J. Uncertainty Fuzziness Knowledge-Based Syst., 13(3), 281-295. https://doi.org/10.1142/S0218488505003461. 
  39. Hsiao, F.H., Hwang, J.D., Chen, C.W. and Tsai, Z.R. (2005), "Robust stabilization of nonlinear multiple time-delay largescale systems via decentralized fuzzy control", IEEE Transactions Fuzzy Syst., 13(1), 152-163. https://doi.org/10.1109/TFUZZ.2004.836067. 
  40. Hsieh, T.Y., Wang, M.H.L., Chen, C.W., Yu, S.E., Yang, H.C. and Chen, T.H. (2006), "A new viewpoint of S-curve regression model and its application to construction management", Int. J. Artif. Intell. Tools, 15(2), 131-142. https://doi.org/10.1142/S021821300600259X. 
  41. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102266 
  42. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835. 
  43. Lin, C.L., Wang, J.F., Chen, C.Y., Chen, C.W. and Yen, C.W. (2009), "Improving the generalization performance of RBF neural networks using a linear regression technique", Expert Syst. Appl., 36(10), 12049-12053. https://doi.org/10.1016/j.eswa.2009.03.012. 
  44. Lin, M.L. and Chen, C.W. (2010), "Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semiarid landscape from satellite imagery", Eng. Comp., 27(10), 5-19. https://doi.org/10.1108/02644401011008504. 
  45. Lin, M.L., Chen, C.W., Wang, Q.B., Cao, Y., Shih, J.Y., Lee, Y.T., Chen, C.Y. and Wang, S. (2009), "Fuzzy model-based assessment and monitoring of desertification using MODIS satellite imagery", Eng. Comp., 26(7), 745-760. https://doi.org/10.1108/02644400910985152. 
  46. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnel. Underground Space Technol., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857. 
  47. Liu, H., Chen, Z., Liu, Y., Chen, Y., Du, Y. and Zhou, F. (2023), "Interfacial debonding detection for CFST structures using an ultrasonic phased array: Application to the Shenzhen SEG building", Mech. Syst. Sig. Processing, 192, 110214. https://doi.org/10.1016/j.ymssp.2023.110214 
  48. Liu, X., He, J., Liu, M., Yin, Z., Yin, L. and Zheng, W. (2023), "A scenario-generic neural machine translation data augmentation method", Electronics, 12(10), 2320. https://doi.org/10.3390/electronics12102320. 
  49. Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Processing, 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490. 
  50. Luo, R., Peng, Z. and Hu, J. (2023), "On model identification based optimal control and it's applications to multi-agent learning and control", Mathematics, 11(4). https://doi.org/10.3390/math11040906. 
  51. Meng, F., Pang, A., Dong, X., Han, C., Sha, X., Jing, N. and Na, J. (2018), "H-infinity optimal performance design of an unstable plant under bode integral constraint", Complexity, 2018, 1-10. https://doi.org/10.1155/2018/4942906. 
  52. Meng, F., Wang, D., Yang, P., Xie, G., Cutberto, R. and RomeroMelendez, C. (2019), "Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers", Complexity, 2019, 1-10. https://doi.org/10.1155/2019/5124108. 
  53. Meng, Q., Lai, X., Yan, Z., Su, C. and Wu, M. (2021), "Motion planning and adaptive neural tracking control of an uncertain two-link rigid-flexible manipulator with vibration amplitude constraint", IEEE Transact. Neural Networks Learning Syst., 1-15. https://doi.org/10.1109/TNNLS.2021.3054611. 
  54. Song, F., Liu, Y., Jin, W., Tan, J. and He, W. (2022), "Data-driven feedforward learning with force ripple compensation for wafer stages: A variable-gain robust approach", IEEE Transact. Neural Networks Learning Syst., 33(4), 1594-1608. https://doi.org/10.1109/TNNLS.2020.3042975. 
  55. Sun, W., Zhao, Y., Li, J., Zhang, L. and Gao, H. (2012), "Active suspension control with frequency band constraints and actuator input delay", IEEE T. Ind. Electron., 59(1), 530-537. https://doi.org/10.1109/TIE.2011.2134057. 
  56. Wang, B., Zhang, Y. and Zhang, W. (2022), "A composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertainties", J. Syst. Sci. Complex., 35(1), 81-104. https://doi.org/10.1007/s11424-022-1030-y. 
  57. Wang, B., Zhu, D., Han, L., Gao, H., Gao, Z. and Zhang, Y. (2023), "Adaptive fault-tolerant control of a hybrid canard rotor/wing UAV under transition flight subject to actuator faults and model uncertainties", IEEE Transact. Aeros. Electronic Syst., https://doi.org/10.1109/TAES.2023.3243580. 
  58. Wang, J., Liang, F., Zhou, H., Yang, M. and Wang, Q. (2022), "Analysis of position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot", Symmetry, 14(4), 825. https://doi.org/10.3390/sym14040825. 
  59. Wang, J., Yang, M., Liang, F., Feng, K., Zhang, K. and Wang, Q. (2022), "An algorithm for painting large objects based on a nine-axis UR5 robotic manipulator", Appl. Sci., 12(14), 7219. https://doi.org/10.3390/app12147219. 
  60. Wang, R., Jing, H., Karimi, H.R. and Chen, N. (2015), "Robust fault-tolerant H ∞ control of active suspension systems with finite-frequency constraint", Mech. Syst. Signal Proces., 62, 341-355. https://doi.org/10.1016/j.ymssp.2015.01.015. 
  61. Wang, R., Jing, H., Yan, F., Karimi, H.R. and Chen, N. (2015), "Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles", J. Frankl. Inst., 352, 468-484. https://doi.org/10.1016/j.jfranklin.2014.05.005. 
  62. Wang, S., Hu, X., Sun, J. and Liu, J. (2023), "Hyperspectral anomaly detection using ensemble and robust collaborative representation", Inform. Sci., 624, 748-760. https://doi.org/10.1016/j.ins.2022.12.096. 
  63. Wu, M., Ba, Z. and Liang, J. (2022), "A procedure for 3D simulation of seismic wave propagation considering sourcepath-site effects: Theory, verification and application", Earthq. Eng. Struct. Dyn., 51(12), 2925-2955. https://doi.org/10.1002/eqe.3708 
  64. Xiao, L. and Zhu, Y. (2015), "Sliding-mode output feedback control for active suspension with nonlinear actuator dynamics", J. Vib. Control, 21(14), 2721-2738. https://doi.org/10.1177/1077546313514760. 
  65. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780 
  66. Yan, A., Li, Z., Cui, J., Huang, Z., Ni, T., Girard, P. and Wen, X. (2022), "LDAVPM: A Latch design and algorithm-based verification protected against multiple-node-updates in harsh radiation environments", IEEE Transact. Comput. Aided Des. Integrated Circuits Syst., 1. https://doi.org/10.1109/TCAD.2022.3213212. 
  67. Yan, A., Yang, K., Huang, Z., Zhang, J., Cui, J., Fang, X. and Wen, X. (2019), "A double-node-upset self-recoverable latch design for high performance and low power application", IEEE Transact. Circuits Syst. II: Express Briefs, 66(2), 287-291. https://doi.org/10.1109/TCSII.2018.2849028. 
  68. Yang, L., Chen, W., Gao, Z. and Chen, Y. (2014), "Nonlinear control of quarter vehicle model with semi-active suspension based on solenoid valve damper", Transactions Chin. Soc. Agri. Mach., 45(4), 1-7. https://doi.org/10.6041/j.issn.1000-1298.2014.04.001. 
  69. Yang, Y., Lin, B. and Zhang, W. (2023), "Experimental and numerical investigation of an arch-beam joint for an arch bridge", Archives Civil Mech. Eng., 23(2), 101. https://doi.org/10.1007/s43452-023-00645-3. 
  70. Yang, Z., Xu, J., Feng, Q., Liu, W., He, P. and Fu, S. (2022), "Elastoplastic analytical solution for the stress and deformation of the surrounding rock in cold region tunnels considering the influence of the temperature field", Int. J. Geomech., 22(8), 4022118. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002466. 
  71. Yeh, K. and Chen, C.W. (2010), "Stability analysis of interconnected fuzzy systems using the fuzzy Lyapunov method", Math. Probl. Eng., 2010, 734340. https://doi.org/10.1155/2010/734340. 
  72. Yeh, K., Chen, C.Y. and Chen, C.W. (2008), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comp., 205(2), 568-577. https://doi.org/10.1016/j.amc.2008.05.104. 
  73. Yuan, G.A.O., Wei, X.U. and Huili, L.A.N. (2014), "Fuzzy sliding mode control for nonlinear vehicle suspension based on differential geometry", J. Hefei Uni. Tech., 3, 266-271. 
  74. Zhai, S., Lyu, Y., Cao, K., Li, G., Wang, W. and Chen, C. (2023), "Seismic behavior of an innovative bolted connection with dualslot hole for modular steel buildings", Eng. Struct., 279, 115619. https://doi.org/10.1016/j.engstruct.2023.115619. 
  75. Zhang, B.L., Tang, G.Y. and Cao, F.L. (2009), "Optimal sliding mode control for active suspension systems", 2009 Int. Conf. Networking Sensing Control, 351-356. https://doi.org/10.1109/ICNSC.2009.4919300. 
  76. Zhang, C. (2022), "The active rotary inertia driver system for flutter vibration control of bridges and various promising applications", Sci. China Technol. Sci., https://doi.org/10.1007/s11431-022-2228-0. 
  77. Zhang, C., Yin, Y., Yan, H., Zhu, S., Li, B., Hou, X. and Yang, Y. (2022), "Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings", Landslides. https://doi.org/10.1007/s10346-022-01994-5. 
  78. Zhang, J., Xie, J., Shi, W., Huo, Y., Ren, Z. and He, D. (2023), "Resonance and bifurcation of fractional quintic Mathieu-Duffing system", Chaos: Interdiscipl. J. Nonlinear Sci., 33(2), 23131. doi: 10.1063/5.0138864 
  79. Zhang, X., Wang, Y., Yuan, X., Shen, Y., Lu, Z. and Wang, Z. (2022), "Adaptive dynamic surface control with disturbance Observers for battery/supercapacitor-based hybrid energy sources in electric vehicles", IEEE Transact. Transport. Electrif., https://doi.org/10.1109/TTE.2022.3194034. 
  80. Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage., 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108. 
  81. Zhou, X., Sun, K., Wang, J., Zhao, J., Feng, C., Yang, Y. and Zhou, W. (2023), "Computer vision enabled building digital twin using building information model", IEEE Transact. Indus. Informat., 19(3), 2684-2692. https://doi.org/10.1109/TII.2022.3190366.