• Title/Summary/Keyword: feedback topology

Search Result 58, Processing Time 0.032 seconds

Gyro HV Power Supply Design for Attitude Control in the Satellite (위성 자세제어용 자이로 HVPS 설계)

  • Kim, Eui-Chan;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.109-113
    • /
    • 2007
  • In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of Flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design, and voltage doubler circuit.

  • PDF

Analysis of Buck-Boost Converter for LED Drive (LED 구동을 위한 승강압 DC/DC 컨버터에 관한 연구)

  • Joe, Wi-Keun;Kim, Yong;Lee, Dong-Hyun;Cho, Kyu-Man;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.967_968
    • /
    • 2009
  • For lighting application, high-power LED nowadays is driven at 350mA and a sensing resistor is used to provide feedback for LED-current regulation. This method adds an IR drop at the output branch, and limits power efficiency as LED current is large and keeps increasing. In this paper, a power efficient LED-current sensing circuit is proposed. The circuit does not use any sensing resistor but extracts LED-current information from the output capacitor of the driver. Controlling the brightness of LEDs requires a driver that provides a constant, regulated current. In one case, the converter may need to step down the input voltage, and, in another, it may need to boost up the output voltage. These situations often arise in applications with wide-ranging ""dirty"" input power sources, such as automotive systems. And, the driver topology must be able to generate a large enough output voltage to forward bias the LEDs. So, to provide this requirements, 13W prototype Buck-Boost Converter is used.

  • PDF

Six-degree-of-freedom Haptic Rendering using Translational and Generalized Penetration Depth Computation (선형 및 일반형 침투깊이를 이용한 6자유도 햅틱 렌더링 알고리즘)

  • Li, Yi;Lee, Youngeun;Kim, Young J.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.173-178
    • /
    • 2013
  • We present six-degree-of-freedom (6DoF) haptic rendering algorithms using translational ($PD_t$) and generalized penetration depth ($PD_g$). Our rendering algorithm can handle any type of object/object haptic interaction using penalty-based response and makes no assumption about the underlying geometry and topology. Moreover, our rendering algorithm can effectively deal with multiple contacts. Our penetration depth algorithms for $PD_t$ and $PD_g$ are based on a contact-space projection technique combined with iterative, local optimization on the contact-space. We circumvent the local minima problem, imposed by the local optimization, using motion coherence present in the haptic simulation. Our experimental results show that our methods can produce high-fidelity force feedback for general polygonal models consisting of tens of thousands of triangles at near-haptic rates, and are successfully integrated into an off-the-shelf 6DoF haptic device. We also discuss the benefits of using different formulations of penetration depth in the context of 6DoF haptics.

Soft-Switching Buck Converter Dropped Voltage Stress of a free-Wheeling Diode Using a Single Switching Device (단일 스위칭소자를 이용하여 환류다이오드의 전압스트레스를 강하시킨 소프트-스위칭 벅 컨버터)

  • 이건행;김영석;김명오
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.576-583
    • /
    • 2004
  • This paper presents a buck circuit topology of high-frequency with a single switching device. It solved the problem which arised from hard-switching in high-frequency using a resonant snubber and operating under the principle of ZCS turn-on and ZVS turn-off commutation schemes. In the existing circuit, it has the voltage stress that is almost twice of input voltage in a free-wheeling diode. In the proposed circuit, it has the voltage stress that is lower than input voltage with modifing a location of free -wheeling diode. In this paper, it expained the circuit operation of each mode and analyzed feedback-loop stabilization. Also it confirmed the waveform of each mode with simulation result. The experiment result verified the simulation waveform and compared the voltage stress of a free -wheeling diode in the exsiting circuit with the voltage stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the hard-switching circuit's efficiency according to the change of load current.

Tactile Display to Render Surface Roughness for Virtual Manufacturing Environment (가상제조환경에서 제품의 표면 거칠기 전달을 위한 촉각 디스플레이)

  • Lee, Dong-Jun;Park, Jae-Hyeong;Lee, Wonkyun;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • In smart factories, the entire manufacturing process from design to the final product is simulated in a virtual manufacturing environment and optimized before starting production. Suppliers and customers make decisions based on the simulation results. Therefore, effective rendering of the information of the virtual products to suppliers and customers is essential for this manufacturing paradigm. In this study, a method of rendering the surface roughness of the virtual products using a tactile display is presented. A tactile display device comprising a $3{\times}3$ array of individually controlled piezoelectric stack actuators is constructed. The surface topology of the virtual products is rendered directly by controlling the piezoelectric stack actuators. A series of experiments is performed to evaluate the performance of the tactile display device. An electrical discharge machined surface is rendered using the proposed method.

Phase Locked Loop Sub-Circuits for 24 GHz Signal Generation in 0.5μm SiGe HBT technology

  • Choi, Woo-Yeol;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • In this paper, sub-circuits for 24 GHz phase locked 100ps(PLLs) using $0.5{\mu}m$ SiGe HBT are presented. They are 24 Ghz voltage controlled oscillator(VCO), 24 GHz to 12 GHz regenerative frequency divider(RFD) and 12 GHz to 1.5 GHz static frequency divider. $0.5{\mu}m$ SiGe HBT technology, which offers transistors with 90 GHz fMAX and 3 aluminum metal layers, is employed. The 24 GHz VCO employed series feedback topology for high frequency operation and showed -1.8 to -3.8 dBm output power within tuning range from 23.2 GHz to 26 GHz. The 24 GHz to 12 GHz RFD, based on Gilbert cell mixer, showed 1.2 GHz bandwidth around 24 GHz under 2 dBm input and consumes 44 mA from 3 V power supply including I/O buffers for measurement. ECL based static divider operated up to 12.5 GHz while generating divide by 8 output frequency. The static divider drains 22 mA from 3 V power supply.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Design of the Resistive Mixer MMIC with high linearity and LO-RF isolation (고선형성과 높은 LO-RF 격리도를 갖는 새로운 구조의 저항성 Mixer MMIC 설계)

  • Lee, Kyoung-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.7-11
    • /
    • 2014
  • In this paper, we designed resistive MMIC mixer using $0.5{\mu}m$ p-HEMT process. This Mixer is designed to have a similar performance in -4 ~ 4 dBm local oscillator signal power level and to maintain a constant conversion loss and linear performance due to the variation of local signal. In order to have such characteristics, we designed new feedback circuit topology by using FET, and minimized performance change for LO signal power level variation, also obtain MMIC mixer characteristics which is able to apply in wideband. In the design result, When the LO signal power is -4 ~ 4 dBm, there was 6 dB conversion loss and it came up with the excellent result that IIP3 got over 30 dBm in 0.5 ~ 2.6GHz frequency band.

Constant Current & Constant Voltage Battery Charger Using Buck Converter (벅 컨버터를 이용한 정전류 정전압 배터리 충전기)

  • Awasthi, Prakash;Kang, Seong-Gu;Kim, Jeong-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.399-400
    • /
    • 2012
  • The proposed battery charger presented in this paper is suitable for Lead-Acid Battery and the dc/dc buck converter topology is applied as a charger circuit. The technique adopted in this charger is constant current & constant voltage dual mode, which is decided by the value of voltage of proposed battery. Automatic mode change function is detected by the percentage value of level of battery charging. CC Mode (Constant Current Mode) is operated when charging level is below 80% of the total charging of Battery voltage and above 80% of battery voltage charging, CV Mode (Constant Voltage Mode) is automatically operated. As the charging level exceeds 120%, it automatically terminates charging. The feedback signal to the PWM generator for charging the battery is controlled by using the current and voltage measurement circuits simultaneously. This technique will degrade the damage of proposed type of battery and improve the power efficiency of charger. Finally, a prototype charger circuit designed for a 12-V 7-Ah lead acid battery is constructed and tested to confirm the theoretical predictions. Satisfactory performance is obtained from simulation and the experimental results.

  • PDF

Spatial target path following and coordinated control of multiple UUVs

  • Qi, Xue;Xiang, Peng;Cai, Zhi-jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.832-842
    • /
    • 2020
  • The coordination control of multiple Underactuated Underwater Vehicles (UUVs) moving in three dimensional space is investigated in this paper. The coordinated path following control task is decomposed into two sub tasks, that is, path following control and coordination control. In the spatial curve path following control task, path following error dynamics is build in the Serret-Frenet coordinate frame. The virtual reference object can be chosen freely on the desired spatial path. Considering the speed of the UUV, the line-of-sight navigation is introduced to help the path following errors quickly converge to zero. In the coordination control sub task, the communication topology of multiple UUVs is described by the graph theory. The speed of each UUV is adjusted to achieve the coordination. The path following system and the coordination control system are viewed as the feedback connection system. Input-to-state stable of the coordinated path following system can be proved by small gain theorem. The simulation experiments can further demonstrate the good performance of the control method.