• Title/Summary/Keyword: fed-batch system

Search Result 83, Processing Time 0.02 seconds

Selection of Constitutive Promoter for Exoinulinase Production in Fed-Batch Culture of Recombinant Yeast (재조합 효모의 유가배양에서 Exoinulinase생산을 위한 Promoter의 선별)

  • 김이경;고지현;김연희;김성구;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.206-211
    • /
    • 2001
  • In order to overexpress constitutively the Kluyveromyces marxianus exoinulinase gene (INUI) in Saccharomyces cerevisiae, four episomal expression systems employing GAPDH, ADHI, PGK and ENOI promoters were constructed as p YIGP aADHI -INU, pPGK-INU, and pENOI- INU plasmids respectively, When S cereviais transformants harboring each plasmid were batchwisely cultivated in the fermentor containing 5% glucose medium no significant differences in the cell growth are observed How- ever the experession level of exoinulinase and plasmid stability showed a strong dependency on the promoter employed. The expression levels of exoinulinase were about 1.70 unit/ml for GAPDH promoter 1.67 unit/ml for PGK promoter, 1.29 unit /ml for ADH1 promoter, and 0.80 unit/ml for ENOl promoter. The plasmid stabilites were maintaines above 80% in all experession systems. except the GAPDH promoter system of 55%, Based on the plas- mid stability and expression level of exoinulinase the ADHl and PGK promoter system were selected for the fed - batch culture to overproduce exoinulinase By the intermittent feeding of yeast extract and glucose, both promoter systems gave the cell concentration of about 30 g-dry cell weight/1 byt the maximal exoinulinase activity of 3.70 unit/ml and plasmid stability of 96% in the ADH1 promoter were higher than those (2.70 unit/ml, 80%) of PGK sys- tem Taking into account the plasmid stability and extended culture time the ADH1 promoter systems would be the most feasible expression systems for the constitutive overproduction of exoinulinase through high cell-density fed- batch cultures using non-selective rich medium.

  • PDF

The Role of Primary Clarifier in Biological Processes for Nutrient Removal (생물학적 질소·인제거 공정에서 일차 침전지의 영향)

  • Whang, Gye-Dae;Kim, Tae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • The lab-scale BNR processes fed with Municipal Wastewater Before or After Primary Clarifier (MWBPC or MWAPC) were operated to observe the behavior of particle organic matter in terms of nitrification and denitrification efficiency. As a result of the fractionation of the COD from MWBPC or MWAPC using an aerobic respirometric serum bottle reactor, the total mass of biodegradable organic matter from MWBPC is about 52% greater than the mass from MWAPC. Batch reactors were operated to observe the effect of the Particulate Organic Matter (POM) on substrate utilization for denitrification. Although the consumption of POM for denitrification was observed, the increment of the Specific Denitrification Rate (SDNR) was not great. In terms of the effect of POM on nitrification at different HRTs, activate sludge reactors were operated to determine the optimal HRT when MWBPC and MWAPC were fed relatively. All reactors showed a great organic matter removal efficiency. Reactors fed with MWAPC had obtained the nitrification efficiency above 90% when the HRT of 4 hr, at least, was maintained, while reactors fed with MWBPC had same efficiency when the HRT longer than 5 hr was kept. Three parallel $A^2/O$ systems fed with MWBPC or MWAPC relatively were operated to investigate the effects of POM on BNR processes with varying the HRT of an anoxic reactor. For all systems, the efficiency of organic matter removal and denitrification, respectively, was great and about the same. In case of denitrification efficiency, system with MWAPC had 1.5% lower than system with MWBPC at the same HRT of anoxic reactor of 2 hr, and the increasing the HRT of the anoxic reactor by 1 hr in systems fed with MWBPC resulted in a 3.5% increment. The denitrification rate was similar while the consumption of organic matter in systems fed with MWBPC was higher than system fed with MWBPC. It suggests that POM in MWBPC was not be used significantly as a substrate for denitrification in system with the HRT of 3 hr of an anoxic reactor.

POWER TAIL ASYMPTOTIC RESULTS OF A DISCRETE TIME QUEUE WITH LONG RANGE DEPENDENT INPUT

  • Hwang, Gang-Uk;Sohraby, Khosrow
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.87-107
    • /
    • 2003
  • In this paper, we consider a discrete time queueing system fed by a superposition of an ON and OFF source with heavy tail ON periods and geometric OFF periods and a D-BMAP (Discrete Batch Markovian Arrival Process). We study the tail behavior of the queue length distribution and both infinite and finite buffer systems are considered. In the infinite buffer case, we show that the asymptotic tail behavior of the queue length of the system is equivalent to that of the same queueing system with the D-BMAP being replaced by a batch renewal process. In the finite buffer case (of buffer size K), we derive upper and lower bounds of the asymptotic behavior of the loss probability as $K\;\longrightarrow\;\infty$.

Expression of Invertase in Recombinant Saccharomyces cerebisiae Containing SUC2 Gene (SUC2 Gene을 갖는 재조합 Saccharomyces cerebisiae의 Invertase 발현특성)

  • 정상철;장재권;김인규;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.263-268
    • /
    • 1989
  • To maximize the performance of recombinant cell fermentation process through optimizing environmental conditions, the production of invertase from recombinant Saccharomyces cerebisiae Containing SUC2 gene was studied as a model. The recombinant cells showed biphasic growth on glucose. Since the promoter of the SUC2 is regulated by the concentration of glucose in the medium, expression of invertase by recombinant yeast began when the glucose concentration decreased in a range of 0.25-0.4 g/L during the batch culture. Plasmid segregation occured frequently during glucose fermentation, and infrequently during ethanol oxidation. A rapid appearance of invertase activity with glucose was observed under nonaerated condition, and the maximum specific invertase activity was about 1.5 times as high as under aerobic condition, In fed batch culture, when n low level of glucose was continuously supplied to the tormentor after the time of glucose depletion during growth phase, specific and total invertase activity increased about 1.7 and 2.9 fold, respectively, in a batch culture.

  • PDF

Enhanced Production of Antifungal Substance(PAFS) Bioxynthesized by Pseudomonas aeruginosa and Examination of Its Physiological Characteristics in Fermentation (Pseudomonas aeruginosa에 의핸 생합성되는 향진균성물질(PAFS)의 생산성 증가 및 생산균주의 배양생리학적 특성 연구)

  • 박선옥;송성기;윤권상;정연호;이상종;정용섭;전계택
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.341-348
    • /
    • 2000
  • Selection of high producer strain, optimization of production medium and cultivation in bioreactor system were carried out in order to produce an antifungal substance, PAFS in large amounts which sources and 41 kinds of nitrogen sources, a synthetic medium consisting of fructose(70 g/1) and ammonium sulfate (10g/l) and a complex medium including galactose(30g/l), fructose(20g/l) and cottonseed flour(35g/l) were determined as opti-mized media for PAFS production. In bioreactor studies examining physiological characteristics of the pro- ducer microorganism with the complex medium, typical pattern of diauxic growth was observed as demonstrated by the result that fructose was not used before almost exhaustion on readily utilizable carbon source, galactose. When galactose was supplemented additionally during the fermentation period. PAFS pro-ductivity did no increases any more, indicating that large portion of the added galactose was used for cell growth instead of biosynthesis of the secondary metabolite. It was deduced that PAFS production could be enhananced by employing fed-batch operation in order to overcome the apparent phenomenon of catabolite repression and /or inhibition.

  • PDF

Extracellular Overproduction of $\beta$-Cyclodextrin Glucanotransferase in a Recombinant E. coli Using Secretive Expression System

  • Lee, Kwang-Woo;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.753-759
    • /
    • 2002
  • $\beta$-Cyclodextrin glucanotransferase ($\beta$-CGTase) was overproduced extracellularly using recombinant E. coli by transforming the plasmid pECGT harboring a secretive signal peptide. The $\beta$-CGTase gene of alkalophilic Bacillus firmus var alkalophilus was inserted into the high expression vector pET20b(+) containing a secretive pelB signal peptide, and then transformed into E. coli BL2l(DE3)pLysS. The optimum culture conditions fer the overproduction of $\beta$-CGTase were determined to be TB medium containing 0.5% (w/v) soluble starch at post-induction temperature of $25^{\circ}C$. A significant amount of $\beta$-CGTase, up to 5.83 U/ml, which was nine times higher than that in the parent strain B. firmus var. alkalophilus, was overproduced in the extracellular compartment. A pH-stat fed-batch cultivation of the recombinant E. coli was also performed to achieve the secretive overproduction of $\beta$-CGTase at a high cell density, resulting in production of up to 21.6 U/ml of $\beta$-CGTase.

Dewatering and Settling Characteristics of Digested Sludge from the Anaerobic Sequencing Batch Reactor for Treatment of Nightsoil (혐기성 연속회분식 공정을 이용한 분뇨처리시 소화슬러지의 침강 및 탈수특성)

  • Lee, Jun-Geol;Jang, Duk;Heo, Jun-Mu;Son, Boo-Soon;Jang, Bong-Ki;Park, Jong-An
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.867-873
    • /
    • 1998
  • Laboratory study was conducted to provide basic data for operating anaerobic sequencing batch reactor(ASBR) process for treatment of nightsoil. The experiments were concerned with digestion characteristics, settleabiltity and dewaterability of digested sludge in ASBR system. Completely-mixed dally-fed control reactor without solid-liquid separation step was also operated to evaluate the baseline performance since the nature of nightsoil was changed with time. In all case, gas production from the ASBR shows 1.3 to 1.44 times higher than that from control, in spite of almost similar trend in organics removal. During thickening period, remarkable decrease in surface settling velocity was observed at the ASBRs compared with the control. In case of the ASBR run, flotation of mixed digested sludge was not occurred. Also, ultimate thickened volume of ASBRs increased 1.2~1.5 times compared with control. Dewaterability of digested sludge without conditioning decreased when the completely-mixed daily-fed reactor for ASBR run was converted to the ASBR. However, improvement of dewaterability of digested sludge from the ASBRs was observed as a result of addition of FeCl$_3$ to digested sludge for conditioning.

  • PDF

Enhancement of BDNF Production by Co-cultivation of Human Neuroblastoma and Fibroblast Cells

  • Hong, Jong-Soo;Oh, Se-Jong;Kim, Sun-Hee;Park, Kwon-Tae;Cho, Jin-Sang;Park, Kyung-You;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1998
  • It has been proved that co-cultivation of human neroblastoma cells and human fibroblast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76${\times}$106 viable cells/mL from 9${\times}$105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5${\times}$106 viable cells/mL, which was much higher than that form fed-batch cultivation. The nerve cell growth was greatly enhance in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from human fibrobast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.

  • PDF

Clostridium acetobutylicum B18를 이용한 부탄올 발효에서 pH 및 extra nutrient가 부탄올 생성에 미치는 영향연구

  • Yun, Ji-Yong;Kim, Tae-Yong;Park, Chan-El;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.243-246
    • /
    • 2000
  • Clostridium acetobutylicum Bl8 can produce a large amount of butanol by control characteristics such as glucose concentration, pH and extra nutrient. It is known that this stain is potentially useful in simultaneous ABE fermentation-seperation system because of its low acid $production^{1).}$ The purpose of this study is to determine optimal condition of fermentation to produce maximum butanol in batch and fed-batch by strain Bl8.

  • PDF

Simultaneous Saccharification and Pervaporative Fermentation of Cellulosic Biomass (투고증발을 이용한 섬유성바이오매스의 동시당화 및 추출발효)

  • 공창범;윤현희
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • Application of pervaporative extraction of ethanol to simultaneous saccharification and fermentation(SSF) of cellulose was investigated. From batch experiments, optimum cellulose substrate and enzyme loadings were found to be 10% and 15 IFPU/g cellulose, respectively. The cellulose conversion was lowered in fed-batch system due to the ethanol accumulation. The activity of the yeast Saccharomyces uvarum used in this study was significantly reduced at ethanol concentrations above around 40 g/L. From pervaporation experiments using PDMS membrane, ethanol was efficiently separated at 38$^\circ C$ and 10 mmHg of a down stream pressure. The pervaporation unit with 240 cm$^2$ of surface area was combined into the SSF reactor. The continuous removal of ethanol by pervaporation during SSF resulted in an improved cellulose conversion. Within the scope of this experiment, ethanol yields in the pervaporative SSF and simple SSF were 68.3% and 56.6%, respectively. The permeate flux for SSF broth pervaporation was about one-half that for the pervaporation of aqueous ethanol solution. Accordingly, the development of a membrane with higher ethanol selectivity and flux will increase the feasibility of this technology.

  • PDF