• 제목/요약/키워드: fed-batch system

검색결과 83건 처리시간 0.027초

동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용 : II. 세포배양 시스템에의 응용 (Development of an Immobilized Adsorbent for In Situ Removal of Ammonium Ion from Animal Cell Culture Media and Its Applications to Animal Cell Culture System : II. Application to Cell Culture System)

  • 박병곤;이해익;전계택;김익환;정연호
    • KSBB Journal
    • /
    • 제13권4호
    • /
    • pp.411-417
    • /
    • 1998
  • The possibility of application of membrane type immobilized adsorbent to the fed-batch or perfusion culture system with anchorage-independent cells as well as batch system was investigated. The improvement in cell density and cell viability due to the combination of immobilized adsorbent with each culture system was evaluated for the investigation, and the optimum culture system employing immobilized adsorbent system was suggested based on the results. It was observed that the system with immobilized adsorbent showed better cell growth and cell viability than that without immobilized adsorbent in every operation system of batch, fed-batch, and perfusion. In case of batch system, 200% improvement of maximum cell density was observed in the system where ammonium chloride was added on purpose. And 50% improvement of maximum cell density was observed in the fed-batch system where ammonium ion accumulates significantly, while small increase in maximum cell density was observed in the perfusion system where dilution of waste byproducts exists. Especially, the fed-batch system showed the most significant improvement on cell growth because both compensation of nutrient and removal of ammonium ion occurred simultaneously in the system. Therefore a combined system of immobilized adsorbent and fed-batch operation could be suggested as an optimum system with in situ removal of ammonium ion.

  • PDF

NONLINEAR IMPULSIVE SYSTEM OF MICROBIAL PRODUCTION IN FED-BATCH CULTURE AND ITS OPTIMAL CONTROL

  • GAO CAIXIA;LANG YANHUAI;FENG ENMIN;XIU ZHILONG
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.203-214
    • /
    • 2005
  • In this study the optimal control of fed-batch glycerol fermentation is investigated based on an impulsive dynamical system. Considering the sudden increase of the glycerol and alkali in fed-batch culture of biodissimilation of glycerol to 1,3-propanediol, this paper proposes a non-linear impulsive system of fed-batch culture. The existence, uniqueness and regularity properties of piecewise solution for the system are proved. In view of the controllability of volumes of glycerol added to the reactor instantaneously, the paper constructs an optimal control model based on the nonlinear impulsive system and the existence of the optimal control is obtained. The control variables here are the moments and the sizes of jumps in the states at the discrete instants and the objective is to maximize the productivity of 1,3-propanediol over one cycle.

고농도 재조합 대장균의 Fed-batch 배양 시스템을 이용한 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체의 생산 (Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody in Fed-batch Culture Systems with High Cell Density Recombinant Escherichia coli)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.489-496
    • /
    • 2000
  • 고농도 유전자 재조합 대장균을 이용하여 pyruvate dehy-drogenase complex-E2 특이성 인간 모노클론 항체의 Fab 부분을 효율적으로 생산하기 위해 회분식, 이단 연속식, 반 유 가식, two-stage cyclic fed-batch 동 여러 가지 배양 방법이 조사되었다. 먼저 플라스미드 안정성 문제를 극복하기 위해 growth stage와 production stage를 분리하는 two-phase 회분식 배양과 이단 연속식 시스템을 시도하였다 그 결과 two-phase 회분식 배양보다는 이단 연속식 배양에서의 세포농도와 항체 생산성이 우수하였다 또한 이단 연속식 배양에서의 세포 성 장과 항처l 생산성은 용존산소를 제어한 경우가 그렇지 않은 경우보다 월등하게 높았다. 그리고 plasmid 안정성에 있어서 는 실험기간 내에 거의 100%를 유지하여 높은 안정도를 보 여주었다. 유가식 공정에 적합한 공급 배지로 변형된 M9 배 지가 최적배지로 선정되었고 이 배지 중 최적의 CjN 비율을 조사한 결파 2:3으로 결정되었다. 반 유가식 시스템에서 constant feeding 전략을 사용할 경우 최적 공급속도는 $0.6g/\ell/hr$이었다. 또한 pulse에 의해 공급배지를 공급할 경우에는 총 공급 량이 같을 경우 소량으로 자주 공급해 주는 것이 공급배지를 한꺼번에 많은 양을 공급해주는 것 보다 바람직하였다. 여러 가지 feeding 전략을 조사해 본 결과 linear feeding 방법이 가장 효과적이었다. 하지만 linear feeding 방법마저도 고농도 세포배양에 한계가 있었기 때문에 pH-stat 방법을 이용한 two-stage cyclic fed-batch 시스템을 시도하여 $54 g/\ell$의 세포 를 얻을 수 있었다. 따라서 이 방법이 일단 생산성 향상을 위한 세포의 고농도 배양에는 조사한 여러 배양 시스템 중에 가장 효율적인 시스템임올 알 수 있었다 하지만 이 시스템 에서 포도당을 낮은 level로 유지할 수 있었으나, 초산의 과도한 축적으로 항체 생산성의 향상은 예상에 비해 크지 않았다.

  • PDF

Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast

  • Agustin Krisna Wardani;Cinthya Putri Utami;Mochamad Bagus Hermanto;Aji Sutrisno;Fenty Nurtyastuti
    • 한국미생물·생명공학회지
    • /
    • 제51권2호
    • /
    • pp.184-190
    • /
    • 2023
  • Bioethanol has recently attracted much attention as a sustainable and environmentally friendly alternative energy source. This study aimed to develop a potential process for bioethanol production by fed-batch fermentation using instant dry yeast. To obtain the highest cell growth, we studied the influence of the initial sugar concentrations and pH of sugarcane molasses in batch fermentation. The batch system employed three levels of sugar concentrations, viz. 10%, 15%, 20% (w/v), and two levels of pH, 5.0 and 5.5. The highest cell growth was achieved at 20% (w/v) and pH 5.5 of molasses. The fed-batch system was then performed using the best batch fermentation conditions, with a molasses concentration of 13% (w/v) which resulted in high ethanol concentration and fermentation efficiency of 15.96% and 89%, respectively.

Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli

  • Passarinha, L.A.;Bonifacio, M.J.;Queiroz, J.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.972-981
    • /
    • 2009
  • In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.

Batch and Fed-batch Production of Hyperthermostable $\alpha$-L-Arabinofuranosidase of Thermotoga maritima in Recombinant Escherichia coli by Using Constitutive and Inducible Promoters

  • Song, Jae-Yong;Keum, In-Kyung;Jin, Qing;Park, Jung-Mi;Kim, Beom-Soo;Jung, Bong-Hwan;Kim, Tae-Jip;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.990-995
    • /
    • 2008
  • A thermostable $\alpha$-L-arabinofuranosidases ($\alpha$-L-AFase) is an industrially important enzyme for recovery of L-arabinose from hemicellulose. The recombinant $\alpha$-L-AFase from Thermotoga maritima was expressed in Escherichia coli by using a constitutive pHCE or an inducible pRSET vectors. In batch fermentation, the constitutive expression system resulted in slightly faster growth rate (0.78 vs. 0.74/hr) but lower enzyme activity (2,553 vs. 3,723 units/L) than those of the induction system. When fed-batch fermentation was performed, biomass and enzyme activity reached the highest levels of 36 g/L and 9,152 units/L, respectively. The fed batch cultures performed superior results than batch culture in terms of biomass yield (4.62-5.42 folds) and enzyme synthesis (3.39-4.00 folds). In addition, the fed-batch induction strategy at high cell density resulted in the best productivity in cell growth as well as enzyme activity rather than the induction method at low cell density or the constitutive expression.

Development of High Density Mammalian CellCulture system for the Production of Tissue-Type Plasminogen Activator

  • Park, Byong-Gon;Chun, Joo-Mi;Lee, Chang-Jin;Chun, Gie-Taek;Kim, Ik-Hwan;Jeong, Yeon-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.123-129
    • /
    • 2000
  • A high cell density culture system for the anchorage dependent CHO cells was developed based on the combination of in removal of ammonium ion and microcarrier culture system, and semi-fed-batch feeding of glucose and glutamine was employed to the developed culture system. The glass bead was selected as an optimum microcarrier in terms of cell growth. An ammonium ion selective zeolite, Phillipsite-Gismondine, was packed in a dialysis menium ion. The semi-fed-batch operation was employer to the novel culture system for the high density cell culture, and the results showed the cell growth was improved by 32% and tPA productivity by 250%.

  • PDF

Studies of Repeated Fed-Batch Fermentation of Cephalosporin C in an Immobilized Cell Bioreactor

  • Park, Hong-Je;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.229-233
    • /
    • 1995
  • Acremonium chrysogenum was immobilized in ionotropic gel beads to develop semi-continuous production of cephalosporin C (CPC). Barium alginate beads were more stable than calcium alginate or strontium alginate beads in chemically defined media. The gel stability of Ba-alginate was further increased by cross-linking with polyethyleneimine (PEI). The presence of carboxymethyl cellulose inside Ba-alginate beads did not reduce mass transfer resistance. Ba-alginate microbeads that had little diffusion limitation increased CPC production rate 1.6 fold higher than that of normal beads. CPC fermentation with immobilized cells in Ba-alginate microbeads was performed continuously for 40 days by way of repeated fed-batch operations. Mathematical modeling was developed to describe the repeated fed-batch fermentation system. Results of the computer simulation agreed well with the experimental data, which made it possible to predict an optimal feeding rate that could maximize total CPC productions.

  • PDF

Control of Feed Rate Using Neurocontroller Incorporated with Genetic Algorithm in Fed-Batch Cultivation of Scutellaria baicalensis Georgi

  • Choi, Jeong-Woo;Lee, Woochang;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.687-691
    • /
    • 2002
  • To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.

Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Kim, Do-Young;Rha, Eugene;Choi, Su-Lim;Song, Jae-Jun;Hong, Seung-Pyo;Sung, Moon-Hee;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.116-122
    • /
    • 2007
  • An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.