• Title/Summary/Keyword: fecal microbiota

Search Result 115, Processing Time 0.035 seconds

Effects of dietary lysozyme supplementation on growth performance, nutrient digestibility, intestinal microbiota, and blood profiles of weanling pigs challenged with Escherichia coli

  • Park, Jae Hong;Sureshkumar, Shanmugam;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.501-509
    • /
    • 2021
  • The aim of this was evaluate the efficacy of lysozyme on growth performance, nutrient digestibility, excreta microflora population, and blood profiles of weanling pigs under Escherichia coli (E. coli) challenge. A total of 30 piglets weaned at 25 days, 7.46 kg body weight, were assigned to three dietary treatments, composed of five replications, two piglets per replication, for 7 days. The dietary treatment groups were negative control (NC; without antibiotics and lysozyme), positive control (PC; NC + antibiotics), lysozyme (NC + 0.1% lysozyme). All piglets were challenged orally with 6 ml suspension, containing E. coli K88 (2 × 109 CFU/mL). Dietary supplementation with lysozyme and PC resulted in no significant differences in average daily gain and gain to feed efficiency. Weanling pigs fed with E. coli challenge with lysozyme and PC treatments had significantly enhanced nutrient retentions of dry matter and energy (p < 0.05); however, there was a tendency to increase nitrogen digestibility. Furthermore, dietary inclusion of lysozyme and antibiotics treatment groups had a beneficial effect on excreta, ileal, and cecal of the fecal microbial population as decreased E. coli (p < 0.05) counts, without effects on lactobacillus counts. A significant effect were observed on a white blood cells, epinephrine and cortisol concentrations were reduced in piglets fed diets containing E. coli challenge with lysozyme and antibiotics supplementation comparison with the NC group. Therefore, the present data indicate that lysozyme in diet could ameliorate the experimental stress response induced by E. coli in piglets by decreasing intestinal E. coli, white blood cells and stress hormones and improving nutrient digestibility.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Clinical Research Trends of Gut Microbiome for Respiratory Diseases (호흡기질환에 대한 장내 미생물의 임상 연구 동향)

  • Lee, Su Won;Choi, Jin Kwan;Yang, Won Kyung;Kim, Seung Hyung;Lyu, Yee Ran;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.119-138
    • /
    • 2021
  • Objectives: This study aimed to review the clinical research of the gut microbiome for respiratory diseases to assist the design of trials for respiratory diseases by regulating the gut microbiome with herbal medicine later. Methods: We searched three international databases (PubMed, CENTRAL and EMBASE) to investigate randomized controlled trials (RCTs) of the gut microbiome for respiratory diseases. The selected trials were analyzed by study design, subject diseases, inclusion/exclusion criteria, sample size, study period, intervention group, control group, outcome measures, and study results. Results: A total of 25 studies were included and published from 1994 to 2021 mostly in Europe and Asia. Subject diseases were many in the order of respiratory tract infection, cystic fibrosis, allergy, and so on. As outcome measures, the gut microbiome in a fecal sample was analyzed by 16S rRNA sequencing analysis method, and symptom assessment tools related each disease were used. Major intervention drugs were probiotics and the results were mostly improved in the composition and diversity of the gut microbiome. Conclusion: Clinical studies of the gut microbiome for respiratory diseases have confirmed various effects and this review provides basic data for a well-designed clinical study for respiratory diseases by regulating the gut microbiome with herbal medicine.

Effects of Oligosaccharide-Supplemented Soy Ice Cream on Oxidative Stress and Fecal Microflora in Streptozotocin-Induced Diabetic Rats (당뇨쥐에서 올리고당 첨가 콩아이스크림이 산화스트레스와 장생태에 미치는 효과)

  • Her, Bo-Young;Sung, Hye-Young;Choi, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1536-1544
    • /
    • 2005
  • We have investigated physiological effects of soy ice cream with oligosaccharide on oxidative stress and fecal microflora in streptozotocin-induced diabetic rats. Parched soybean powder (7.6$\%$, w/w) substituted skimmed milk and cream, soybean oil (7.6$\%$, w/w) for milk oil, and fructooligosaccharide (9.5$\%$, w/w) for sucrose. Five types of ice cream were prepared: regular, oligosaccharide-supplemented regular, soy, oligosaccharide - supplemented soy, and oligosaccharide - supplemented black soybean ice cream . Freeze - dried ice cream was supplemented to AIN93-based diets at 30$\%$ (w/w) containing 6.5$\%$ soy and 4.5$\%$ fructooligosaccharide. Diabetes was induced by intramuscular administration of streptozotocin, and experimental diets were given for 4 weeks. Plasma concentration of thiobarbituric acid reactive substances (TBARS) was significantly increased in the diabetic rats compared with the normal rats, then was significantly decreased with feeding soy ice cream containing diet compared with regular ice cream containing diet among the diabetic groups. The levels of TBARS in liver were decreased in the rats that were fed either soy or oligosaccharide ice cream compared with the rats that were fed regular ice cream. Erythrocyte superoxide dismutase activity was significantly increased in the rats fed soy ice cream compared with the rats fed regular ice cream. Erythrocyte glutathione peroxidase and catalase activities were significantly increased in the rats fed black soybean ice cream. Fecal concentrations of Lactobacilli were significantly higher in the rats fed soy ice cream and oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. Fecal concentrations of Bifidobacteria were significantly higher in the rats fed oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. In conclusion, oligosaccharide- supplemented soy ice cream suppressed lipid peroxidation and improved the got microbiota in diabetic rats compared with milk-based regular ice cream.

Effect of Dietary Live or Killed Kimchi Lactic Acid Bacteria on Growth Performance, Nutrient Utilization, Gut Microbiota and Meat Characteristics in Broiler Chicken (사료 내 생균 또는 사균 형태 김치 유산균의 첨가가 육계의 생산성, 영양소 이용률, 장내 미생물 및 계육 특성에 미치는 영향)

  • Lee, Jeong Heon;Kim, Sang Yun;Lee, Jun Yeop;Ahammed, Musabbir;Ohh, Sang Jip
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • This study was conducted to evaluate the effect of dietary Weissella koreensis (Wk), a prominent kimchi lactic acid bacteria supplementation on growth performance, nutrients utilization, gut microbiota and meat characteristics in broiler chicken. Both live and killed Wk was compared to know which could be more efficacious as a feed probiotics. Three Wk supplemented groups and no Wk supplemented group were designated according to supplementation levels and cell status. Those were; Control (no Wk), 0.1 % live Wk (LWk 0.1), 0.5% live Wk (LWk 0.5) and 0.5% killed Wk (KWk 0.5). Body weight gain and feed conversion efficiency were improved (P<0.05) by dietary LWk supplementation. KWk did not exert any benefit on growth performance. Crude protein utilizability of KWk supplemented diet was lower (P<0.05) than that of other diets. However, there were no differences among treatments in other nutrients utilization. Serum IgG concentration and relative weight of bursa of Fabricius was highest (P<0.05) in broiler chicken fed KWk 0.5 diet. Cecal anaerobic lactic acid bacteria count of LWk groups were higher (P<0.05) than those of control and KWk 0.5 groups. Dietary Wk supplementation failed to lower the count of cecal and fecal E. coli. There was no effect of dietary Wk on TBARS values and fatty acids profile of broiler leg meat. However, the dietary supplementation of Wk exerted characteristic difference on electronic nose flavor of broiler meat. This study showed that dietary supplementation of LWk was able to improve body weight gain, feed conversion efficiency and cecal lactic acid bacterial count in broiler chicken. Further, the result of this study implemented that a live kimchi lactic acid bacteria, LWk, but not killed Wk, could be used as a probiotic feed supplement for broiler.

Effects of Supplementation of Multienzymes in Diets Containing Different Energy Levels on Growth Performance, Nutrient Digestibility, Blood Metabolites, Microbiota and Intestinal Morphology of Broilers (에너지 수준이 다른 사료에 복합효소제의 첨가가 육계의 사양성적, 영양소 소화율, 혈액성상, 장내미생물 균총 및 소장 융모에 미치는 영향)

  • Shim, Young Ho;Kim, Jin Soo;Hosseindoust, Abdolreza;Ingale, Santosh Laxman;Choi, Yo Han;Kim, Min Ju;Ohh, Seung Min;Ham, Hyung Bin;Chae, Byung Jo
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.28 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • The present study was conducted to investigate the effects on growth performance, nutrient digestibility, and gut health of broiler chickens when a dietary supplementation of multienzymes was added to diets, containing different energy levels. A total of 480 broiler chickens of similar body weight (Ross 308, 1-day-old) were randomly subjected to four treatments. The dietary treatments included a corn-soybean meal-based diet supplemented with: multienzyme (amylase+protease+ mannanase+xylanase+phytase), 0.05% enzyme, and different energy levels (3010 and 3060 kcal/kg). The experimental diets were fed to the chicks in a mash form for 35 days in two phases (1-21 d, phase I; and 22-35 d, phase II). During the overall period, chicks fed with diets supplemented with multienzymes had a better weight gain (p<0.05) and feed conversion ratio (FCR) than those fed with diets without enzymes. There was no difference in the growth rate and FCR among the chicks fed with diets supplemented with enzymes, even though the dietary energy levels were different. The apparent fecal and ileal digestibility of dry matter, gross, crude protein, calcium, and phosphorus were significantly enhanced (p<0.05). The population of cecal and ileal Lactobacillus spp. was significantly increased (p<0.05), and Clostridium spp. and coliforms were significantly decreased (p<0.05) in diets supplemented with enzymes. Villus height and villus height to crypt depth ratio in the small intestine was also significantly enhanced (p<0.05) in diets supplemented with enzymes. In conclusion, multienzyme supplementation had positive effects on the weight gain of broilers, FCR, digestibility of nutrients, and on the growth of intestinal microbiota.

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants (곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링)

  • Moon, Yuseok;Kim, Dongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.

Characteristics of butyric acid bacterium, Clostridium butyricum DIMO 52, isolated from feces of Korean breastfeeding infants (국내 모유수유 유아의 분변에서 분리한 낙산균 Clostridium butyricum DIMO 52의 특징)

  • Mo, SangJoon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.775-784
    • /
    • 2021
  • After isolating the DIMO 52 strain with a large inhibition zone diameter for Clostridium perfringens and maximum butyric acid production from the fecal sample of a breastfeeding infant, it was identified as Clostidium butyricum. The maximum growth of the DIMO 52 strain was reached 24 h after inoculation, and the maximum butyric acid concentration was approximately 34.73±4.27 mM. The DIMO 52 strain survived approximately 67.5% of the initial inoculum at pH 2.0, and approximately 64.9% survived in RCM broth supplemented with 0.3% (w/v) oxgall. In addition, DIMO 52 showed antibacterial activity against Escherichia coli KCTC 2441 and Salmonella Typhimurium KCTC 1925. In LPS-stimulated RAW264.7 cells, 1×103 CFU/mL viable cells of the DIMO 52 strain also exhibited significant NO (nitric oxide) production inhibitory activity (33%, p<0.01). This result suggests that C. butyricum DIMO 52 has anti-inflammatory activity related to NO radical-scavenging activity. In conclusion, C. butyricum DIMO 52 isolated in this study has the potential to be used as a probiotic.

Effects of restricted feeding with fermented whole-crop barley and wheat on the growth performance, nutrient digestibility, blood characteristic, and fecal microbiota in finishing pigs

  • Lee, Chang Hee;Kim, Hyeun Bum;Ahn, Jung Hyun;Jung, Hyun Jung;Yun, Won;Lee, Ji Hwan;Kwak, Woo Gi;Oh, Han Jin;Liu, Shu Dong;An, Ji Seon;Song, Tae Hwa;Park, Tae Il;Kim, Doo Wan;Yu, Dong Jo;Song, Min Ho;Cho, Jin Ho
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.665-675
    • /
    • 2018
  • A total of 80 pigs [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] with an average body weight of $72.9{\pm}2.6kg$ were used in the present study to investigate the effects of fermented whole crop wheat and barley with or without supplementing inoculums throughout the restricted feeding in finishing pigs. There were 4 replicate pens per treatment. Pigs were fed ad libitum throughout the experiment as the control (CON), and the other four groups were restricted to 10% in the CON diet and fed ad libitum fermented whole crop cereals: fermented whole crop barley with inoculums; fermented whole crop barley without inoculums; fermented whole crop wheat with inoculums; and fermented whole crop wheat without inoculums. During the entire experiment, the average daily feed intake (ADFI) decreased in the fermented barley and fermented wheat groups compared to the CON, while no difference was observed in the average daily gain (ADG), feed efficiency (gain : feed ratio, G : F) between the control and fermented whole crop barley, wheat diet group. Dry matter and nitrogen digestibility did not show a significant difference among the treatments. In the blood constituents, concentrations of blood urea nitrogen were significantly lower in pigs fed fermented whole crop barley without inoculum diets compared with the other treatments. In conclusion, restricted feeding with fermented whole crop barley and wheat regardless of the supplementing inoculums showed no significant difference in growth performance compared to the CON. This suggests that there is a possibility that fermented whole crop barley and wheat could replace part of the conventional diets.