• 제목/요약/키워드: fecal microbiota

검색결과 125건 처리시간 0.045초

Decoding the intestinal microbiota repertoire of sow and weaned pigs using culturomic and metagenomic approaches

  • Mun, Daye;Kim, Hayoung;Shin, Minhye;Ryu, Sangdon;Song, Minho;Oh, Sangnam;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1423-1432
    • /
    • 2021
  • To elucidate the role and mechanism of microbes, we combined culture-dependent and culture-independent approaches to investigate differences in gut bacterial composition between sows and weaned pigs. Under anaerobic conditions, several nonselective and selective media were used for isolation from fecal samples. All isolated bacteria were identified and classified through 16S rRNA sequencing, and the microbiota composition of the fecal samples was analyzed by metagenomics using next generation sequencing (NGS) technology. A total of 278 and 149 colonies were acquired from the sow and weaned pig fecal samples, respectively. Culturomics analysis revealed that diverse bacterial genus and species belonged to Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were isolated from sow and weaned pigs. When comparing culture-dependent and culture-independent analyses, 191 bacterial species and 2 archaeal bacterial species were detected through culture-independent analysis, and a total of 23 bacteria were isolated through a culture-dependent approach, of which 65% were not detected by metagenomics. In conclusion, culturomics and metagenomics should be properly combined to fully understand the intestinal microbiota, and livestock-derived microbial resources should be informed by culturomic approaches to understand and utilize the mechanism of host-microbe interactions.

Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing

  • Lee, Sang A;Lim, Ji Ye;Kim, Bong-Soo;Cho, Su Jin;Kim, Nak Yon;Kim, Ok Bin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권3호
    • /
    • pp.242-248
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Feeding in infancy is the most significant determinant of the intestinal microbiota in early life. The aim of this study was to determine the gut microbiota of Korean infants and compare the microbiota obtained between breast-fed and formula-fed Korean infants. SUBJECTS/METHODS: We analyzed the microbial communities in fecal samples collected from twenty 4-week old Korean (ten samples in each breast-fed or formula-fed) infants using pyrosequencing. RESULTS: The fecal microbiota of the 4-week-old Korean infants consisted of the three phyla Actinobacteria, Firmicutes, and Proteobacteria. In addition, five species, including Bifidocbacterium longum, Streptococcus salivarius, Strepotococcus lactarius, Streptococcus pseudopneumoniae, and Lactobacillus gasseri were common commensal intestinal microbiota in all infants. The predominant intestinal microbiota in the breast-fed infants (BFI) included the phylum Actinobacteria (average 70.55%), family Bifidobacteriacea (70.12%), genus Bifidobacterium (70.03%) and species Bifidobacterium longum (69.96%). In the microbiota from the formula-fed infants (FFI), the proportion of the phylum Actinobacteria (40.68%) was less, whereas the proportions of Firmicutes (45.38%) and Proteobacteria (13.85%) as well as the diversity of each taxonomic level were greater, compared to those of the BFI. The probiotic species found in the 4-week-old Korean infants were Bifidobacterium longum, Streptococcus salivarius, and Lactobacillus gasseri. These probiotic species accounted for 93.81% of the microbiota from the BFI, while only 63.80% of the microbiota from the FFI. In particular, B. longum was more abundant in BFI (69.96%) than in FFI (34.17%). CONCLUSIONS: Breast milk supports the growth of B. longum and inhibits others. To the best of our knowledge, this study was the first attempt to analyze the gut microbiota of healthy Korean infants according to the feeding type using pyrosequencing. Our data can be used as a basis for further studies to investigate the development of intestinal microbiota with aging and disease status.

Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation

  • Zhang, Wanying;Zou, Guiling;Li, Bin;Du, Xuefei;Sun, Zhe;Sun, Yu;Jiang, Xiaofeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1132-1141
    • /
    • 2020
  • Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.

Senior Thai Fecal Microbiota Comparison Between Vegetarians and Non-Vegetarians Using PCR-DGGE and Real-Time PCR

  • Ruengsomwong, Supatjaree;Korenori, Yuki;Sakamoto, Naoshige;Wannissorn, Bhusita;Nakayama, Jiro;Nitisinprasert, Sunee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1026-1033
    • /
    • 2014
  • The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene

  • Zhao, Yiping;Li, Bei;Bai, Dongyi;Huang, Jinlong;Shiraigo, Wunierfu;Yang, Lihua;Zhao, Qinan;Ren, Xiujuan;Wu, Jing;Bao, Wuyundalai;Dugarjaviin, Manglai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1345-1352
    • /
    • 2016
  • The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제16권2호
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng

  • Kim, Jeon-Kyung;Choi, Min Sun;Jeung, Woonhee;Ra, Jehyeon;Yoo, Hye Hyun;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.611-618
    • /
    • 2020
  • Background: It is well recognized that gut microbiota is involved in the biotransformation of ginsenosides by converting the polar ginsenosides to nonpolar bioactive ginsenosides. However, the roles of the gut microbiota on the pharmacokinetics of ginsenosides in humans have not yet been fully elucidated. Methods: Red ginseng (RG) or fermented red ginseng was orally administered to 34 healthy Korean volunteers, and the serum concentrations of the ginsenosides were determined using liquid chromatography-tandem mass spectrometry. In addition, the fecal ginsenoside Rd- and compound K (CK)eforming activities were measured. Then, the correlations between the pharmacokinetic profiles of the ginsenosides and the fecal ginsenoside-metabolizing activities were investigated. Results: For the RG group, the area under the serum concentratione-time curve values of ginsenosides Rd, F2, Rg3, and CK were 8.20 ± 11.95 ng·h/mL, 4.54 ± 3.70 ng·h/mL, 36.40 ± 19.68 ng·h/mL, and 40.30 ± 29.83 ng·h/mL, respectively. For the fermented red ginseng group, the the area under curve from zero to infinity (AUC) values of ginsenosides Rd, F2, Rg3, and CK were 187.90 ± 95.87 ng·h/mL, 30.24 ± 41.87 ng·h/mL, 28.68 ± 14.27 ng·h/mL, and 137.01 ± 96.16 ng·h/mL, respectively. The fecal CK-forming activities of the healthy volunteers were generally proportional to their ginsenoside Rd-eforming activities. The area under the serum concentration-time curve value of CK exhibited an obvious positive correlation (r = 0.566, p < 0.01) with the fecal CK-forming activity. Conclusion: The gut microbiota may play an important role in the bioavailability of the nonpolar RG ginsenosides by affecting the biotransformation of the ginsenosides.

An investigation of seasonal variations in the microbiota of milk, feces, bedding, and airborne dust

  • Nguyen, Thuong Thi;Wu, Haoming;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1858-1865
    • /
    • 2020
  • Objective: The microbiota of dairy cow milk varies with the season, and this accounts in part for the seasonal variation in mastitis-causing bacteria and milk spoilage. The microbiota of the cowshed may be the most important factor because the teats of a dairy cow contact bedding material when the cow is resting. The objectives of the present study were to determine whether the microbiota of the milk and the cowshed vary between seasons, and to elucidate the relationship between the microbiota. Methods: We used 16S rRNA gene amplicon sequencing to investigate the microbiota of milk, feces, bedding, and airborne dust collected at a dairy farm during summer and winter. Results: The seasonal differences in the milk yield and milk composition were marginal. The fecal microbiota was stable across the two seasons. Many bacterial taxa of the bedding and airborne dust microbiota exhibited distinctive seasonal variation. In the milk microbiota, the abundances of Staphylococcaceae, Bacillaceae, Streptococcaceae, Microbacteriaceae, and Micrococcaceae were affected by the seasons; however, only Micrococcaceae had the same seasonal variation pattern as the bedding and airborne dust microbiota. Nevertheless, canonical analysis of principle coordinates revealed a distinctive group comprising the milk, bedding, and airborne dust microbiota. Conclusion: Although the milk microbiota is related to the bedding and airborne dust microbiota, the relationship may not account for the seasonal variation in the milk microbiota. Some major bacterial families stably found in the bedding and airborne dust microbiota, e.g., Staphylococcaceae, Moraxellaceae, Ruminococcaceae, and Bacteroidaceae, may have greater influences than those that varied between seasons.

Efficacy Assessment of the Co-Administration of Vancomycin and Metronidazole in Clostridioides difficile-Infected Mice Based on Changes in Intestinal Ecology

  • Saiwei Zhong;Jingpeng Yang;He Huang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.828-837
    • /
    • 2024
  • Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.

Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study

  • Park, Hyung Jin;Lee, Sang Eun;Kim, Hyeun Bum;Kim, Jae Hoon;Seo, Kyoung Won;Song, Kun Ho
    • 대한수의학회지
    • /
    • 제55권3호
    • /
    • pp.205-208
    • /
    • 2015
  • Ten dogs were enrolled in this study: two healthy dogs, two obese dogs without other medical issues and six obese dogs with underlying diseases including pemphigus, chronic active hepatitis, hyperadrenocorticism, narcolepsy, otitis media and heartworm infection. Pyrosequencing of the 16S rRNA gene to explore the gut bacterial diversity revealed that distal gut bacterial communities of samples from patients with pemphigus, otitis media and narcolepsy consisted primarily of Firmicutes, while the major phylum of the distal gut bacterial communities in patients with chronic active hepatitis and hyperadrenocorticism was Fusobacteria. Proteobacteria were the dominant phylum in heartworm infected obese patients.