• Title/Summary/Keyword: fecal microbiota

Search Result 130, Processing Time 0.02 seconds

Comparison of the fecal microbiota with high- and low performance race horses

  • Taemook Park;Jungho Yoon;YoungMin Yun;Tatsuya Unno
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.425-437
    • /
    • 2024
  • Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.

The impact of different diets and genders on fecal microbiota in Hanwoo cattle

  • Seunghyeun, Sim;Huseong, Lee;Sang, Yoon;Hyeonsu, Seon;Cheolju, Park;Minseok, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.897-910
    • /
    • 2022
  • Bovine fecal microbiota is important for host health and its composition can be affected by various factors, such as diet, age, species, breed, regions, and environments. The objective of this study was to evaluate the impact of diet and gender on fecal microbiota in Korean native Hanwoo cattle. The 16S rRNA gene amplicon sequencing of fecal microbiota was conducted from 44 Hanwoo cattle divided into four groups: (1) 11 heifers fed an oat hay plus total mixed ration (TMR) diet for breeding (HOTB), (2) 11 heifers fed an early fattening TMR diet (HEFT), (3) 11 steers fed the early fattening TMR diet (SEFT), and (4) 11 steers fed the late fattening TMR diet (SLFT). Firmicutes and Bacteroidota were the first and second most dominant phyla in all the samples, respectively. The Firmicutes/Bacteroidota (F/B) ratio associated with feed efficiency was significantly greater in the SLFT group than in the other groups. At the genus level, Romboutsia, Paeniclostridium, and Turicibacter were the most abundant in the SLFT while Akkermansia, Bacteroides, and Monoglobus were the most abundant in the HOTB group. Although the same early fattening TMR diet was fed to Hanwoo heifers and steers, Marvinbryantia and Coprococcus were the most abundant in the HEFT group while Alistipes and Ruminococcus were the most abundant in the SEFT group. Shannon and Simpson diversity indices were significantly lower in the SLFT group than in the other groups. Distribution of fecal microbiota and functional genetic profiles were significantly different among the four treatment groups. The present study demonstrates that different diets and genders can affect fecal microbiota and the F/B ratio may be associated with feed efficiency in Hanwoo cattle. Our results may help develop strategies to improve gut health and productivity through manipulation of fecal microbiota using the appropriate diet considering Hanwoo cattle gender.

Differences in fecal and cecal microbiota in C57BL/6J mice fed normal and high fat diet (고지방 식이 조절에 따른 C57BL/6J 마우스의 분변과 맹장에서 나타나는 미생물생태 차이)

  • Lee, Sunwoo;Vineet, Singh;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.399-405
    • /
    • 2021
  • A number of studies have been conducted to prevent obesity due to the worldwide increasing rate of obesity and its adverse effects on our health. Recently, a relationship between obesity and gut microbiome has been reported. Fecal and cecal microbiota are generally targeted for examining the gut microbiome during dietary interventions. There is, however, no common understanding on which microbiota and how results elucidated from the data would differ. In this study, we conducted dietary induced obesity study and compared fecal and cecal microbiota affected by dietary interventions. Normal Diet and high fat diet were fed to 6 weeks old mice for 12 weeks, and 16 S rRNA genes amplified from fecal and cecal DNA were sequenced using MiSeq. Our results show that the 𝛼-diversity showed significant differences between the dietary interventions as well as cecal and fecal microbiota. The difference in the taxonomic compositions between cecal and fecal microbiota had become clearer at the family and genus level. At the genus level, Faecalibaculum and Lactobacillus were more abundant in the cecal and fecal microbiota, respectively. In general dietary intervention studies, dietary effects are more significant than type difference. However, the microbiota analysis results should be interpreted carefully, considering both diet and samples (feces/caecum).

Refractory Clostridium difficile Infection Cured With Fecal Microbiota Transplantation in Vancomycin-Resistant Enterococcus Colonized Patient

  • Jang, Mi-Ok;An, Jun Hwan;Jung, Sook-In;Park, Kyung-Hwa
    • Intestinal research
    • /
    • v.13 no.1
    • /
    • pp.80-84
    • /
    • 2015
  • The rates and severity of Clostridium difficile infections, including pseudomembranous colitis, have increased markedly. However, there are few effective treatments for refractory or recurrent C. difficile infections and the outcomes are poor. Fecal microbiota transplantation is becoming increasingly accepted as an effective and safe intervention in patients with recurrent disease, likely due to the restoration of a disrupted microbiome. Cure rates of >90% are being consistently reported from multiple centers. We cured a case of severe refractory C. difficile infection with fecal microbiota transplantation in a patient colonized by vancomycin-resistant enterococcus.

Recent Update in Fecal Microbiota Transplantation (Fecal Microbiota Transplantation의 최근 동향)

  • Kim, Haejin;Kang, Kyungmin;Kim, Sujin;Im, Eunok
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.265-274
    • /
    • 2014
  • Gut microbiota is a group of microorganisms that resides in the intestine and serves many important functions in human health. Using 16S ribosomal RNA sequencing analysis, a wide variety of bacteria in human gastrointestinal tract has been identified along with intriguing findings that there is a different bacterial composition among individuals. Fecal microbiota transplantation (FMT) is a procedure of stool transplantation from healthy donors to patients suffering from various diseases. Specifically, FMT is able to alter the composition of gut microbiota of recipients and therefore could be an effective treatment for the patients with gastrointestinal diseases including recurrent Clostridium difficile infection, inflammatory bowel disease, and irritable bowel syndrome. Here we review a list of human diseases related to gut microbiota disturbance and the case studies of FMT. We also summarize medicines and diagnostic tools that are under development. Therefore, gut microbiota can be a next generation's biotherapy for promotion of health and treatment of chronic diseases.

Effect of Glycyrrhiza Varieties WON-GAM on Composition of Fecal Microbiota in DSS-induced Colitis Model

  • Sa-Haeng Kang;Young-Jae Song;Dong-Keun Kim;Jeong-Hyang Park;Ju-Ryun Soh;Jong-Hyun Lee;Wonnam Kim;Hyo-Jin An;Jae-Ki Chang;Jeonghoon Lee;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.80-80
    • /
    • 2020
  • Glycyrrhizae Radix (GR), commomly known as liquorice, is a medicinal and edible plant widely used in East Asia with its pharmacological properties. Currently, Glycyrrhiza uralensis, G. glabra and G. inflata are used for pharmaceutical purposes in Korea and then the improved Glycyrrhiza varieties, WON-GAM (WG) has been developed by Korea Rural Development Administration. To evaluate equivalence of efficacy, several comparative studies between already-registered species and new cultivars have been conducted. To evaluate equivalence of efficacy, several comparative studies between already-registered species and new cultivars have been conducted. The aim of this study was to evaluate the effect of WG on fecal microbiota in DSS-induced colitis model. Fecal microbiota was analyzed by terminal restriction fragment length polymorphism (T-RFLP). The composition of the fecal microbiota did not show a specific pattern based on experimental groups; however, a tendency toward an increase in the proportion of Lactobacillales was observed. Glycyrrhiza varieties could change composition of fecal microbiota in DSS-induced colitis model. This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014246022020)" Rural Development Administration.

  • PDF

Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1067-1071
    • /
    • 2020
  • To understand the formation of initial gut microbiota, three initial fecal samples were collected from two groups of two breast milk-fed (BM1) and seven formula milk-fed (FM1) infants, and the compositional changes in gut microbiota were determined using metagenomics. Compositional change analysis during week one showed that Bifidobacterium increased from the first to the third fecal samples in the BM1 group (1.3% to 35.1%), while Klebsiella and Serratia were detected in the third fecal sample of the FM1 group (4.4% and 34.2%, respectively), suggesting the beneficial effect of breast milk intake. To further understand the compositional changes during progression from infancy to childhood (i.e., from three weeks to five years of age), additional fecal samples were collected from four groups of two breast milk-fed infants (BM2), one formula milk-fed toddler (FM2), three weaning food-fed toddlers (WF), and three solid food-fed children (SF). Subsequent compositional change analysis and principal coordinates analysis (PCoA) revealed that the composition of the gut microbiota changed from an infant-like composition to an adult-like one in conjunction with dietary changes. Interestingly, overall gut microbiota composition analyses during the period of progression from infancy to childhood suggested increasing complexity of gut microbiota as well as emergence of a new species of bacteria capable of digesting complex carbohydrates in WF and SF groups, substantiating that diet type is a key factor in determining the composition of gut microbiota. Consequently, this study may be useful as a guide to understanding the development of initial gut microbiota based on diet.

Failure of Fecal Microbiota Transplantation in a Three-Year-Old Child with Severe Refractory Ulcerative Colitis

  • Kumagai, Hideki;Yokoyama, Koji;Imagawa, Tomoyuki;Inoue, Shun;Tulyeu, Janyerkye;Tanaka, Mamoru;Yamagata, Takanori
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.3
    • /
    • pp.214-220
    • /
    • 2016
  • Fecal microbiota transplantation (FMT) is a treatment designed to correct gut dysbiosis by administration of feces from a healthy volunteer. It is still unclear whether FMT for children with ulcerative colitis (UC) is effective or hazardous. Here we describe a young patient to have received FMT for UC. A three-year-old girl was admitted to our hospital with severe active UC, and treated with aminosalicylates and various immunosuppressive drugs. As remission was not achieved, we decided to try FMT before colectomy. We administered donor fecal material a total of six times by retention enema (${\times}2$) and via a nasoduodenal tube (${\times}4$) within 10 days. The patient developed abdominal pain and pyrexia after each FMT session. Analyses revealed the transferred donor fecal microbiota had not been retained by the patient, who ultimately underwent colectomy. The severity of the UC and/or timing of FMT may have partly accounted for the poor outcome.

Effect of Feeding Bacillus subtilis natto on Hindgut Fermentation and Microbiota of Holstein Dairy Cows

  • Song, D.J.;Kang, H.Y.;Wang, J.Q.;Peng, H.;Bu, D.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • The effect of Bacillus subtilis natto on hindgut fermentation and microbiota of early lactation Holstein dairy cows was investigated in this study. Thirty-six Holstein dairy cows in early lactation were randomly allocated to three groups: no B. subtilis natto as the control group, B. subtilis natto with $0.5{\times}10^{11}cfu$ as DMF1 group and B. subtilis natto with $1.0{\times}10^{11}cfu$ as DMF2 group. After 14 days of adaptation period, the formal experiment was started and lasted for 63 days. Fecal samples were collected directly from the rectum of each animal on the morning at the end of eighth week and placed into sterile plastic bags. The pH, $NH_3$-N and VFA concentration were determined and fecal bacteria DNA was extracted and analyzed by DGGE. The results showed that the addition of B. subtilus natto at either treatment level resulted in a decrease in fecal $NH_3$-N concentration but had no effect on fecal pH and VFA. The DGGE profile revealed that B. subtilis natto affected the population of fecal bacteria. The diversity index of Shannon-Wiener in DFM1 decreased significantly compared to the control. Fecal Alistipes sp., Clostridium sp., Roseospira sp., beta proteobacterium were decreased and Bifidobacterium was increased after supplementing with B. subtilis natto. This study demonstrated that B. subtilis natto had a tendency to change fecal microbiota balance.

Microbial Modulation in Inflammatory Bowel Diseases

  • Jongwook Yu;Jae Hee Cheon
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.44.1-44.28
    • /
    • 2022
  • Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.