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INTRODUCTION 

 

Probiotics are living microbes which administered in 

adequate amounts confer a health benefit to the host 

(FAO/WHO, 2001). Some researches showed that 

probiotics can improve the performance of calves (Meyer et 

al., 2001; Timmerman et al., 2005), modify intestinal 

balance (Fuller, 1989) and mitigate calf scours (Wehnes et 

al., 2009). Probiotics can have several modes of action. 

These include - restricting colonization of pathogenic 

microbes on mucosal surfaces by a mechanism of 

competitive exclusion, stimulating an immune response, 

facilitating the proliferation of other commensal bacteria 

and producing antimicrobial substances (La Ragione et al., 

2001; Hong et al., 2005; Leser et al., 2009).  

The major probiotic strains are Lactobacillus, 

Saccharomyces, Bacillus, Streptococcus, and Aspergillus 

(Tannock, 2001), and so on. Most of the previous research 

on probiotics were focused on the application of various 

strains of lactic acid bacteria (Miettinen et al., 1996; 

Holzapfel et al., 2001). Several Bacillus sp. bacteria, such 

as Bacillus licheniformis and Bacillus subtilis have gained 

more attention for their role in controlling infectious 

diseases, thereby improving productive performance in 

animals (Holzapfel et al., 2001). Unlike the lactic acid 

bacteria, Bacillus sp. is not normally found in the 

gastrointestinal tract. Bacillus sp. exists in an 

endosymbiotic relationship with their host, being 

temporarily able to survive and proliferate within 

gastrointestinal tract (GIT) and finally excreted in the faeces 

(Hong et al., 2005). Bacillus sp. also provides beneficial 

effects via one or a number of the modes of action 

described above (Wehnes et al., 2009). Bacillus sp. have 

demonstrated effectiveness as probiotics because they have 

been shown to be capable of inhibiting pathogens, such as 

Clostridium sp. (Guo et al., 2006), Campylobacter sp. 
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(Fritts et al., 2000), Streptococcus sp. (Teo and Tan, 2005), 

Escherichia coli (Teo and Tan, 2006), Salmonella 

typhimurium, and Staphylococcus aureus (Sumi et al., 1997). 

B. subtilis natto isolated from the Japanese fermented 

soybean staple known as ‘natto’ is a gram-positive spore-

forming bacterium and is a subspecies of B. subtilis 

according to the 16S rRNA sequence analysis (Qin et al., 

2005). Our prior research suggested that the viable probiotic 

characteristics of B. subtilis natto was beneficial to the 

immune system of the calf (Sun et al., 2010). 

The gastrointestinal tract of healthy animals is colonized 

by a complex microbiota formed by many different species 

of microorganism (Frizzo et al., 2008). The microbial 

balance in the microbiota of the digestive tract is important 

to promote efficient digestion and maximum nutrient 

absorption. It can increase the host capacity for excluding 

pathogen microorganisms and thus, to prevent some 

diseases at the same time (Walter et al., 2003). The 

microbial shedding and fermentation parameters of the 

feces can particularly reflect the true condition of the 

hindgut (Fox et al., 2007). However, the effects of dietary 

supplementation with B. subtilus natto on hindgut 

microbiology and microbial population have been rarely 

investigated. Consequently, this study was designed to 

assess the effect of B. subtilis natto on hindgut microbiota 

and fermentation of Holstein dairy cows. 

 

MATERIALS AND METHODS 

 

Cows and diets 

All animals used in this experiment were maintained 

according to the principles of the Chinese Academy of 

Agricultural Sciences Animal Care and Use Committee. 

The study was conducted at the Beijing Dairy Cattle center 

in Yanqing Conty, Beijing. Thirty-six early lactation 

Holstein dairy cows were used in this experiment, and the 

experiment dates were from March 9th to May 3rd, 2010. 

Cows were fed a typical total mixed ration (TMR) based on 

China Standard NY/t 34 (2004) and NRC (2001) (Table 1) 

and pre-weighted rations (110%) of TMR was supplied to 

the cows every meal. 

 

Experimental design 

After two weeks of adaptation feeding, cows were 

divided into three groups: i) no B. subtilis natto as the 

control group (CON); ii) cows were fed the TMR diet 

supplemented with 6 g/d B. subtilis natto fermentation 

product (0.510
11

 cfu of B. subtilis natto/d) (DFM1); and 

iii) cows were fed the TMR diet supplemented with 12 g/d 

B. subtilis natto fermentation product (1.010
11

 cfu of B. 

subtilis natto/d) (DFM2). The TMR was given three times a 

day at 0700, 1400 and 2100 with the B. subtilis natto being 

added daily in the morning feeding. The solid state 

fermentation products were produced by Langfang Dongxin 

Biological Technology Co., LTD (China) using the prior 

identified B. subtilis natto from our laboratory. The number 

of viable B. subtilis natto spores in the product was 

determined by plate count on LB medium (5% agar, 0.5% 

NaCl, 1% soya peptone, 0.3% beef extract, pH = 7.0) after 

heat treatment (80C for 10 min), and approximately 

8.310
9 
spores per gram of solid-state fermentation product 

were obtained. Animals had free access to fresh water and a 

plain mineral block during the period of the experiment.  

 

Sample collection and analysis 

Fecal samples were collected directly from the rectum 

of each animal on the morning at the end of eighth week 

Table 1. Ingredient and chemical composition of the diet (DM 

basis) 

Item TMR 

Ingredient (%)  

Corn silage 23.10 

Alfalfa hay 9.20 

Chinese wildrye 8.60 

Corn grain 12.90 

Dry distillers grains 2.60 

Soybean meal 8.80 

Soybean dried grain 3.73 

Barley grain 5.90 

Beet pulp 5.90 

Cotton seed meal 3.93 

Soybean curb residue 5.60 

Wheat bran 2.40 

Calcium hydrogen phosphate 1.32 

Rumen protected methionine 0.06 

Fatty powder 0.85 

Limestone 1.56 

Salt 1.02 

Molasses 0.08 

Sodium bicarbonate 1.81 

Magnesium oxide 0.21 

Premix1 0.43 

Total 100.00 

Chemical composition  

NEL
2 (Mcal/kg DM) 1.38 

CP (% DM) 17.77 

NDF (% DM)  43.80 

ADF (% DM)  21.83 

Ca (% DM)  0.94 

P (% DM) 0.41 
1 Contained per kilogram of the premix: vitamin A, 2,000,000 IU; vitamin 

D, 300,000 IU; vitamin E, 3,000 IU; Cu, 3,500 mg; Fe, 10,000 mg; Zn, 

10,000 mg; Mn, 9,000 mg; Mg, 9,800 mg; I, 90 mg; Se, 40 mg; Co, 30 

mg. 
2 Calculated value (based on China Standard NY /t 34, 2004 and NRC 

(2001)). 
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and placed into sterile plastic bags. These bags were kept on 

ice until the sampling of all animals was completed. The 

entire process was limited to one hour’s duration  

Fecal pH: The pH of fresh feces was determined 

immediately after defecation by thoroughly mixing 10 g 

fresh feces with 20 mL double-deionized water in 50 mL 

tubes and submerging the pH probe (370 model pH meter, 

Jenway, UK) in the mixture (Breg et al., 2005). Then 4ml of 

the feces suspension was placed into a 10 mL sterile test 

tube. 1 mL 25% meta-phosphoric acid was added into 4 mL 

of the feces suspension, then mixed well and stored at 

20C for further NH3-N and VFA analysis. 

Fecal NH3-N and VFA: Fecal NH3-N was measured 

according to Bromner and Keeney (1965). Fecal VFA 

concentrations were determined using gas chromatography 

(model 6890, Series II; Hewlett Packard Co., Avondale, PA) 

using a DB-FFAP (15 m0.32 mm0.25 m) and FID. The 

samples were run at a split ratio of 50:1 with a programmed 

temperature gradient (100C initial temperature for 1 min, 

with a 2C rise per min to 120C and a 10 min final 

temperature). The temperature of the injector and detector 

was 250C and 280C respectively. The carrier gas was N2, 

and column flow rate was 1 mL/min (Mohammed et al., 

2004). 

PCR-DGGE: The fecal DNA of the eight week was 

extracted by the method of RBB+C (Yu et al., 2004). For 

DGGE analysis, approximately 200 bp of the fecal total 16S 

rDNA gene was amplified using primers: 338f (5’-

ACTCCTACGGGAGGCAGC AG-3’) and 533r (5’-

TTACCGCGGCTGCTGGCAC-3’) and with a 40-base GC-

clamp (CGCCCGCCGCGCGCGGCGGGCGGGGCGGG 

GGCACGGGGGG) at the 5’ terminus of 338f primer. All 

PCR amplifications were performed in 50 L volumes 

containing 25 L 2HiFiTaq StarMix (GenStar, USA), 1 L 

500 nM each primer, 100 ng DNA template. After prior 

denaturation at 94C for 4 min, 10 cycles of touchdown 

PCR were performed (94C for 30 s, 61C for 30 s, with a 

0.5C per cycle decrement, and 72C for 1 min), followed 

by 25 cycles of PCR (94C for 30 s, 56C for 30 s, and 

72C for 1 min), and a final extension step at 72C for 7 

min.  

The PCR-DGGE was performed using a DCode 

Universal Mutation Detection System (Bio-Rad 

Laboratories, Hercules, CA, USA). Fifteen L of PCR 

products were loaded in a 7.5% polyacrylamide/gel (37.5:1) 

in 0.5TAE (20 mmol/L Tris-HCl, 10 mmol/L acetic acid, 

0.5 mmol/L EDTA adjusted to pH 8.3) buffer. The 

polyacrylamide gels contained a 40% of denaturant at the 

top of the gel grading to a 60% denaturant at the bottom 

(100% denaturants consisting of 40% [v/v] formamide and 

7 M urea). The DGGE gel was run for 16 h at 60C and  

85 V. After electrophoresis, the gels were stained with silver 

nitrate (Yu et al., 2004).  

Sequencing: Putative indicator bands were excised from 

the gels and DNAs were recovered according to boiling 

methods (Wang et al., 2006). The 16S rDNA from each 

band was enriched by PCR using the same primer 338f and 

533r without a GC-clamp under the prior PCR process. 

Purified PCR products were cloned into pMD18-T vector, 

and transformed into Escherichia coli JM109 competent 

cells following the manufacturer's instructions (TaKaRa, 

Japan). Screening the positive clones in the LB solid 

medium containing X-Gal and ampicillin (Amp), and the 

sequencing was completed by the BGI Company, Beijing 

center (Beijing, China). After aligning with sequences from 

GenBank and RDP, 16S rDNA sequences were blasted 

individually with the highest similar sequence. 

 

Statistical analysis 

All data were analyzed using the Proc Mixed procedure 

of the SAS system (version 8.2, SAS Institute Inc., Cary, 

NC). p-Values <0.05 were considered statistically 

significant, and trends were discussed at p<0.1. 

For microbial diversity analysis, after staining, DGGE 

gels were scanned and analyzed using Quantity-one 

software (Bio-Rad) and the peak density was calculated. 

The unweighted pair group method using arithmetic 

averages (UPGMA) algorithm was used as implemented in 

the analysis software for the construction of dendrograms. 

The microbial diversity was analyzed according to 

Shannon-Wiener index (H’) (Spellerberg and Fedor, 2003):  

 

H’ = Pi logPi  

 

Pi = Ni/N, relative intensity in the profile 

Ni = surface of the peak i 

N = sum of the surfaces for all the peak within the 

profile 

 

RESULTS 

 

Fecal pH, NH3-N and VFA 

All results are listed in Table 2. There were no treatment 

effects on fecal pH during this study. Compared to the 

Control group, supplementation of B. subtilis natto in the 

diets led to a significant decrease in total fecal NH3-N in 

DFM1 and DFM2 (p<0.10). No differences were observed 

in total fecal VFAs or the proportion of individual VFAs 

such as: acetate, propionate, butyric, isobutyric, valeric or 

isovaleric when cows were supplemented with either 

0.510
11

 cfu of B. subtilis natto/d or 1.010
11

 cfu of      

B. subtilis natto/d. 

 

Fecal microbial analysis 

The total fecal DNA, DGGE fingerprint for the eighth 
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week for both CON and DFM1 is shown in Figure 1(a). 

Examination of the gel indicated that the position and 

number of bands were similar in each group. However 

Bands 1, 2, 4, 5, 6, 7, and 8 were decreased in intensity or 

disappeared in the same fingerprint of the DFM1 group, 

while bands 3, 9, and 11 increased in intensity compared 

with the CON. In addition the band group labeled ‘10’ was 

a new band group which was not present in the CON 

fingerprint. It was also observed that there were numerous 

color differences in this gel that were implied the difference 

in density. Dendrograms shown that lanes belonged to the 

same group: lanes 1, 2, 3, 4, 5, 6, and lanes 7, 8, 9, 10, 11, 

12 clustered respectively and the similarity of the two 

groups was about 66% (Figure 1(b)). Labeled bands were 

excised and sequenced, the results are shown in Table 3, 

fecal Alistipes sp., Clostridium sp., Roseospira sp., beta 

proteobacterium were decreased and Bifidobacterum was 

increased after supplementing B. subtilis natto. However, 

some bands were changed such as bands group 1, 2, 3, 7, 

and 11, that were uncultured bacteria sp.. Even if they were 

excised from the band groups, the sequence was 

inconsistent. For example  bands 4, 5, 6, 9, and 10 

generated two different results. The Shannon-Wiener index 

of CON and DFM1 was 3.34760.07 and 3.07250.08 

respectively, and a significant difference was obtained in 

our study when supplementing B. subtilis natto in the diets 

at eight week (p<0.10).  

 

DISCUSSION 

 

This study investigated the effects of supplementing   

B. subtilis natto on hindgut fermentation and microbiota 

through fecal. No obvious changes in fecal pH were 

observed, however, a small decline in fecal pH was 

previously associated with altered fermentation patterns and 

microbial ecology in the hindgut (Medina et al., 2002). 

Similar results were also observed by Qiao et al. (2010). 

The decrease of fecal pH in this study may have contributed 

to the increase of Bifidobacteria in the hindgut of the cows 

fed B. subtilis natto. It is also possible that the decline of 

fecal pH may connect with the decrease of fecal NH3-N 

concentration. In this study  when the B. subtilis natto 

product was added to the diets  the concentration of total 

dietary N did not change. However, the resultant 

concentration of fecal NH3-N was decreased (p<0.01). 

Fecal N contains mainly undigested feed protein and 

metabolic fecal N (de Boer et al., 2002). Therefore, these 

results can be explained by assuming that the 

supplementation of B. subtilis natto product enhanced the 

diet utilization efficiency and reduced the excretion of 

protein in the feces (Spiehs et al., 2009). Previous research 

suggested that feeding fermented products of B. subtilis to 

layer hens (Santoso et al., 1999) and broilers (Santoso et al., 

1995) reduced NH3-N release from excreta significantly, so 

we would surmise that there is a microbiological 

component which can reduce urease activity within the 

fecal microbial population. No difference in fecal VFAs or 

the concentration of individual VFAs was observed in the 

treatment groups that were supplemented with B. subtilis 

natto. Similar results were reported in meat goats, but no 

consistent benefit was noted from supplementing healthy, 

growing meat goats with probiotic products (Whieley et al., 

2009).  

The microbial population of the intestine plays an 

important role in overall animal health, productivity and 

well-being. Therefore, assessing the diversity of microbial 

communities (in terms of richness and structure) is a useful 

indicator as to how animals evolve within their environment 

(Fromin et al., 2002). In this study we reported the changes 

in hindgut microflora as measured in the faeces after 

supplementing B. subtilis natto using DGGE methods. 

There was a significant difference for the Shannon-Wiener 

index (H) between the CON group and the DFM1 group at 

the eighth week, suggesting that the microbial population in 

the rumen of the cows in this study was affected by 

supplementing B. subtilis natto. Studies have demonstrated 

that probiotics can provide good production responses in 

various fields of animal production (Fuller, 1989; Hosoi et 

Table 2. Effects of feeding Bacillus subtilis natto on fecal pH, NH3-N, and VFA 

Item 
Treatment1 

SEM p-value 
CON DFM1 DFM2 

pH 6.83 6.78 6.76 0.04 0.37 

NH3-N (mg/mL) 13.01 10.36 10.02 0.89 0.07 

TVFA (mmol/L) 22.93 22.43 22.63 1.01 0.94 

Acetate (mmol/L) 17.34 16.35 17.12 0.8 0.667 

Propionate (mmol/L) 3.99 4.08 3.88 0.19 0.80 

Butyric (mmol/L) 0.90 0.91 0.91 0.07 0.99 

Valeric (mmol/L) 0.3213 0.2809 0.2915 0.01 0.16 

Isobutyric (mmol/L) 3.99 3.96 3.88 0.21 0.94 

Isovaleric (mmol/L) 0.2 0.18 0.18 0.01 0.83 
1 CON = No B. subtilis natto; DFM1 = 0.51011 CFU of B. subtilis natto/d; DFM2 = 1.01011 CFU of B. subtilis natto/d. 
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al., 2000; Hong et al., 2005; Frizzo et al., 2008). Probiotics 

can competitively exclude pathogenic bacteria or be 

antagonistic towards their growth, thus helping to maintain 

the health of the intestinal tract (Jin et al., 1997; Hong et al., 

2005). In addition, probiotics affects the bacterial 

population and mix as measured in the faeces (Whitley et 

al., 2009). An increase in the level of Bifidobacterium sp. 

and a decrease in Alistipes sp., Clostridium sp., Roseospira 

sp. was found in this study. This is consistent with changes 

in Bifidobacterium and Clostridium sp. reported by Guo et 

al. (2006), E. coli 0157:H7 reported in lamb faeces by Lema 

et al. (2001) and a reduction in Salmonella shedding in beef 

cattle reported by Stephens et al. (2007). However 

inconsistent results were reported by other researchers 

where the abundance and population density of dairy cow 

were improved by the addition of B. subtilus Pab02 (Pan et 

al., 2010) but no effect was found in fecal microflora after 

supplementing the diets of meat goats with a probiotic 

(Whitley et al., 2009).  

 

CONCLUSIONS 

 

The addition of B. subtilus natto to the diets of dairy 

cows in early lactation was shown to significantly reduce 

NH3-N in the faeces indicating a possible improvement in 

nitrogen utilization. In addition B. subtilus natto may 

change the microfloral mix within the faeces. More research 

is required to understand the mode of action, and the effects 

of these changes on animal production. 

 

 
(a) 

 
(b) 

Figure 1. (a) DGGE profiles of 16S rDNA sequences amplified from DNA extracted from the eight week of the trial. Lane 1 to 6: CON; 

lane 7 to 12: DFM1. (b) UPGMA clustering of Figure 1(a). No. 1, 2, 3, 4, 5, 6 represent CON; No. 7, 8, 9, 10, 11, 12 represent DFM1. 
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