• 제목/요약/키워드: features-extracting

검색결과 606건 처리시간 0.028초

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.

사용자의 신체적 특징과 뇌파 집중 지수를 이용한 가상 모니터 개념의 NUI/NUX (NUI/NUX of the Virtual Monitor Concept using the Concentration Indicator and the User's Physical Features)

  • 전창현;안소영;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.11-21
    • /
    • 2015
  • Human-Computer Interaction(HCI)에 대한 관심도가 높이지면서, HCI에 대한 연구도 활발히 진행되고 있다. 이와 더불어 사용자의 몸짓이나 음성을 이용하는 Natural User Interface/Natural User eXperience(NUI/NUX)에 대한 연구도 활발히 진행되고 있다. NUI/NUX의 경우, 제스처 인식이나 음성 인식 등의 인식 알고리즘이 필요하다. 하지만 이러한 인식 알고리즘은 전처리, 정규화, 특징 추출과 같은 단계를 거쳐야하기 때문에 구현이 복잡하고, 트레이닝에 많은 시간을 투자해야 한다는 단점이 있다. 최근에는 NUI/NUX 개발 도구로 Microsoft 사의 Kinect가 개발되어 개발자와 일반인들에게 많은 관심을 받고 있고, 이를 이용한 다양한 연구가 진행 중에 있다. 본 저자들의 이전 연구에서도 사용자의 신체적 특징을 이용하여 뛰어난 직관성을 가진 핸드 마우스를 구현하였다. 하지만 마우스의 움직임이 부자연스럽고 정확도가 낮아 사용자가 사용하기 다소 어려웠다는 단점이 있다. 본 연구에서는 Kinect를 통해 사용자의 신체적 특징을 실시간으로 추출하고, 이를 이용해 가상 모니터라는 새로운 개념을 추가한 핸드 마우스 인터페이스를 설계하고 구현하였다. 가상 모니터는 사용자의 손으로 마우스를 제어할 수 있는 가상의 공간을 의미한다. 이를 통해 가상 모니터 상의 손의 좌표를 실제 모니터 상의 좌표로 정확하게 매핑(mapping)이 가능하다. 가상 모니터를 사용함으로써 이전 연구의 장점인 직관성을 유지하고, 단점인 정확도를 높일 수 있다. 추가적으로 뇌파 집중 지표를 이용해 사용자의 불필요한 행동을 인식하여 핸드 마우스 인터페이스의 정확도를 높였다. 제안하는 핸드 마우스의 직관성과 정확성을 평가하기 위하여 10대부터 50대까지 50명에게 실험을 하였다. 직관성 실험 결과로 84%가 1분 이내에 사용방법을 터득하였다. 또한 동일한 피실험자에게 일반적인 마우스 기능(드래그, 클릭, 더블클릭)에 대해 정확성 실험을 한 결과로 드래그 80.9%, 클릭 80%, 더블 클릭 76.7%의 정확성을 보였다. 실험 결과를 통해 제안하는 핸드 마우스 인터페이스의 직관성과 정확성을 확인하였으며, 미래에 손으로 시스템이나 소프트웨어를 제어하는 인터페이스의 좋은 예시가 될 것으로 기대된다.

과학 수업의 혼성공간에서 드러나는 중학생의 지식자본 및 교수학습 특성: 7학년 생명 영역을 중심으로 (Funds of Knowledge and Features of Teaching and Learning in the Hybrid Space of Middle School Science Class: Focus on 7th grade Biology)

  • 이민주;김희백
    • 한국과학교육학회지
    • /
    • 제34권8호
    • /
    • pp.731-744
    • /
    • 2014
  • 학습자가 가진 문화와 자원을 수업의 중심 자원으로 이끌어내고자 하는 노력은, 학습자에게 보다 호응할 수 있는 교수학습을 모색하는 연구자들에게 중요한 단초를 제공할 수 있다. 본 연구에서는 과학수업의 혼성적 공간에서 학습자들이 드러내는 지식자본으로는 어떤 것이 있는지 살펴보고, 이같은 지식자본이 자발적 과정을 통해 수업 상황으로 유입되고, 수업의 핵심적 자원으로 작용하려면 어떠한 교수적 지원이 뒷받침되어야 하는지 알아보고자 하였다. 이를 위하여 7학년 '주변의 생물', '식물과 영양' 단원에서의 실제 수업 상황에서 5개월에 걸친 참여관찰을 수행하였고, 학습자의 지식자본이 가장 활발하게 부상하는 수업을 추출하였으며, 근거이론에 기반한 지속적 비교분석법을 이용하여 수집된 자료를 범주화 하였다. 연구 결과, 학생의 지식자본은 가정, 지역공동체, 또래문화, 대중문화 등의 4가지 기반에서 근거한 것으로 범주화할 수 있었으며, 특히 또래문화와 관련된 지식자본이 학습자의 보다 활발한 발화 및 참여를 촉진하는 것으로 드러났다. 또 이와 같은 지식자본이 수업 상황으로 보다 적극적으로 유입되기 위해서는 혼성적 수업 환경의 제공과 더불어 유입된 지식자본의 보편성, 지식자본의 공유와 확장, 그리고 지식의 공동 구성 및 공유라고 하는 실행공동체의 지향이 필요함을 알 수 있었다. 본 연구에서는 이 같은 교수학습적 특성에 기반하여, 학습자가 가진 '잠재적 수업자원'으로서의 지식자본을 어떻게 '실질적인 수업의 자원'으로 끌어올릴 수 있을 것인지에 대한 교육적 함의를 제시하였다. 학습자의 지식자본을 기반으로 한 수업은 전통적인 수업에서 점점 소외되고 있는 다양한 비참여자들을 포함하여 학습자들을 보다 적극적으로 수업으로 초대할 수 있는 발판이 되어준다. 또한 학습자의 삶에서 비롯된 경험과 과학 지식의 혼성적 상호작용을 통하여 지식의 공동 구성을 가능하게 하며, 보다 유의미한 학습 경험으로 자리 잡을 수 있게 한다는 데 그 의의가 있다.

스토리 기반의 정보 검색 연구 (Story-based Information Retrieval)

  • 유은순;박승보
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.81-96
    • /
    • 2013
  • 웹의 발전과 콘텐츠 산업의 팽창으로 비디오 데이터가 폭발적으로 증가함에 따라 데이터의 정보 검색은 매우 중요한 문제가 되었다. 그동안 비디오 데이터의 정보 검색과 브라우징을 위해 비디오의 프레임(frame)이나 숏(shot)으로부터 색채(color)와 질감(texture), 모양(shape)과 같은 시각적 특징(features)들을 추출하여 비디오의 내용을 표현하고 유사도를 측정하는 내용 기반(content-based)방식의 비디오 분석이 주를 이루었다. 영화는 하위 레벨의 시청각적 정보와 상위 레벨의 스토리 정보를 포함하고 있다. 저차원의 시각적 특징을 통해 내용을 표현하는 내용 기반 분석을 영화에 적용할 경우 내용 기반 분석과 인간이 인지하는 영화의 내용 사이에는 의미적 격차(semantic gap)가 발생한다. 왜냐하면 영화의 스토리는 시간의 진행에 따라 그 내용이 변하고, 관점에 따라 주관적 해석이 가능한 고차원의 의미정보이기 때문이다. 따라서 스토리 차원의 정보 검색을 위해서는 스토리를 모델링하는 정형화된 모형이 필요하다. 최근 들어 소셜 네트워크 개념을 활용한 스토리 기반의 비디오 분석 방법들이 등장하고 있다. 그러나 영화 속 등장인물들의 소셜 네트워크를 통해 스토리를 표현하는 이 방법들은 몇 가지 문제점들을 드러내고 있다. 첫째, 등장인물들의 관계에만 초점이 맞추어져 있으며, 스토리 진행에 따른 등장인물들의 관계 변화를 역동적으로 표현하지 못한다. 둘째, 등장인물의 정체성과 심리상태를 보여주는 감정(emotion)과 같은 심층적 정보를 간과하고 있다. 셋째, 등장인물 이외에 스토리를 구성하는 사건과 배경에 대한 정보들을 반영하지 못하고 있다. 따라서 본 연구는 기존의 스토리 기반의 비디오 분석 방법들의 한계를 살펴보고, 문제 해결을 위해 문학 이론에서 제시하고 있는 서사 구조에 근거하여 스토리 모델링에 필요한 요소들을 인물, 배경, 사건의 세 가지 측면에서 제시하고자 한다.

온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여 (Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach)

  • 이지현;정상형;김준호;민은주;여운영;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.97-117
    • /
    • 2020
  • 상품 평가 기준은 상품에 대한 속성, 가치 등을 표현한 지표로써 사용자나 기업이 상품을 측정하고 파악할 수 있게 한다. 기업이 자사 제품에 대한 객관적인 평가와 비교를 수행하기 위해서는 적절한 기준을 선정하는 것이 필수적이다. 이때, 평가 기준은 소비자들이 제품을 실제로 구매 및 사용 후 평가할 때 고려하는 제품의 특징을 반영하여야 한다. 그러나 기존에 사용되던 평가 기준은 제품마다 상이한 소비자의 의견을 반영하지 못하고 있다. 기존 연구에서는 소비자 의견이 반영된 온라인 리뷰를 통해 상품의 특징, 주제를 추출하고 이를 평가기준으로 사용했다. 하지만 여전히 상품과 연관성이 낮은 평가 기준이 추출되거나 부적절한 단어가 정제되지 않는 한계가 있다. 본 연구에서는 이를 극복하기 위해 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 기법으로 리뷰로부터 평가 기준 후보군을 추출하고 이를 k-최근접 이웃 접근법(k-Nearest Neighbor Approach, k-NN)을 이용해 정제하는 모델을 개발하고 검증했다. 제시하는 방법은 준비 단계와 추출 단계로 이루어진다. 준비 단계에서는 워드임베딩(Word Embedding) 모델과 평가 기준 후보군을 정제하기 위한 k-NN 분류기를 생성한다. 추출 단계에서는 k-NN 분류기와 언급 비율을 이용해 평가 기준 후보군을 정제하고 최종 결과를 도출한다. 제안 모델의 성능 평가를 위해 명사 빈도 추출 모델, LDA 빈도 추출 모델, 실제 전자상거래 사이트가 제공하는 평가 기준을 세 비교 모델로 선정했다. 세 모델과의 비교를 위해 설문을 진행하고 점수화하여 결과를 검정했다. 30번의 검정 결과 26번의 결과에서 제안 모델이 우수함을 확인했다. 본 연구의 제안 모델은 전자상거래 사이트에서 리뷰 특성을 반영한 상품군 별 차원을 도출하는데 활용될 수 있고 이를 기초로 인사이트 발굴을 위한 리뷰 분석 및 활용에 크게 기여할 것이다.

텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구 (A Study of 'Emotion Trigger' by Text Mining Techniques)

  • 안주영;배정환;한남기;송민
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.69-92
    • /
    • 2015
  • 최근 소셜 미디어의 사용이 폭발적으로 증가함에 따라 이용자가 직접 생성하는 방대한 데이터를 분석하기 위한 다양한 텍스트 마이닝(text mining) 기법들에 대한 연구가 활발히 이루어지고 있다. 이에 따라 텍스트 분석을 위한 알고리듬(algorithm)의 정확도와 수준 역시 높아지고 있으나, 특히 감성 분석(sentimental analysis)의 영역에서 언어의 문법적 요소만을 적용하는데 그쳐 화용론적 의미론적 요소를 고려하지 못한다는 한계를 지닌다. 본 연구는 이러한 한계를 보완하기 위해 기존의 알고리듬 보다 의미 자질을 폭 넓게 고려할 수 있는 Word2Vec 기법을 적용하였다. 또한 한국어 품사 중 형용사를 감정을 표현하는 '감정어휘'로 분류하고, Word2Vec 모델을 통해 추출된 감정어휘의 연관어 중 명사를 해당 감정을 유발하는 요인이라고 정의하여 이 전체 과정을 'Emotion Trigger'라 명명하였다. 본 연구는 사례 연구(case study)로 사회적 이슈가 된 세 직업군(교수, 검사, 의사)의 특정 사건들을 연구 대상으로 선정하고, 이 사건들에 대한 대중들의 인식에 대해 분석하고자 한다. 특정 사건들에 대한 일반 여론과 직접적으로 표출된 개인 의견 모두를 고려하기 위하여 뉴스(news), 블로그(blog), 트위터(twitter)를 데이터 수집 대상으로 선정하였고, 수집된 데이터는 유의미한 연구 결과를 보여줄 수 있을 정도로 그 규모가 크며, 추후 다양한 연구가 가능한 시계열(time series) 데이터이다. 본 연구의 의의는 키워드(keyword)간의 관계를 밝힘에 있어, 기존 감성 분석의 한계를 극복하기 위해 Word2Vec 기법을 적용하여 의미론적 요소를 결합했다는 점이다. 그 과정에서 감정을 유발하는 Emotion Trigger를 찾아낼 수 있었으며, 이는 사회적 이슈에 대한 일반 대중의 반응을 파악하고, 그 원인을 찾아 사회적 문제를 해결하는데 도움이 될 수 있을 것이다.

항공 라이다 데이터의 분할: 점에서 패치로 (Segmentation of Airborne LIDAR Data: From Points to Patches)

  • 이임평
    • 한국측량학회지
    • /
    • 제24권1호
    • /
    • pp.111-121
    • /
    • 2006
  • 최근 들어 항공 라이다 데이터를 도시모델링에 활용하려는 많은 연구들이 진행되고 있다. 도시모델을 구성하는 인공 구조물을 효율적으로 추출하기 위해서는 측정된 3차원 점의 집합으로부터 평면패치를 자동으로 추출하는 것이 중요하다. 평면 패치의 자동 추출에 대한 상당한 연구가 수행되었지만 아직도 추출의 정확도와 완전성 및 계산의 효율성 측면에서 만족할 만한 결과를 얻지 못하고 있다. 이에 본 연구는 항공 라이다 측량으로 취득된 3차원 점의 집합을 자동으로 분할하여 표면패치를 구성하는 효율적인 방법의 개발을 목표로 한다. 제안된 방법은 3차원 점간의 인접성을 수립하고, 소량의 인접점을 그룹핑하여 초기패치를 생성하고, 이를 성장시켜 표면패치를 생성하는 과정으로 구성된다. 제안된 방법은 패치를 성장시키는 과정에서 통계적 분석에 기반하여 가변적으로 설정되는 임계값을 이용하여 분할 결과의 질을 향상시키고, Priority Heap과 순차적최소제곱법에 기반한 효율적인 계산 방법을 사용하였다는 점이 특징적이다. 제안된 방법을 다양한 실측 라이다 데이터에 적용하여 성능을 검증하였다. 제안한 분할 방법을 통해 대용량 3차원 점으로 구성되는 라이다 데이터는 명시적이고 강인한 표현 형태인 표면 패치의 집합으로 변환될 수 있었다. 이러한 중간 변환 과정을 통해 빌딩 추출과 같은 객체 인식의 문제를 효과적으로 해결할 수 있다.

일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법 (A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image)

  • 김성훈;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권5호
    • /
    • pp.251-260
    • /
    • 2016
  • 얼굴 인식은 얼굴 영상에서 특징을 추출하고, 이를 다양한 알고리즘을 통해 학습하여 학습된 데이터와 새로운 얼굴 영상에서의 특징과 비교하여 사람을 인식하는 기술로 인식률을 향상시키기 위해서 다양한 방법들이 요구되는 기술이다. 얼굴 인식을 위해 학습 단계에서는 얼굴 영상들로 부터 특징 성분을 추출해야하며, 이를 위한 기존 얼굴 특징 성분 추출 방법에는 선형판별분석(Linear Discriminant Analysis, LDA)이 있다. 이 방법은 얼굴 영상들을 고차원의 공간에서 점들로 표현하고, 클래스 정보와 점의 분포를 분석하여 사람을 판별하기 위한 특징들을 추출하는데, 점의 위치가 얼굴 영상의 화소값에 의해 결정되므로 얼굴 영상에서 불필요한 영역 또는 변화가 자주 발생하는 영역이 포함되는 경우 잘못된 얼굴 특징이 추출될 수 있으며, 특히 일반 카메라 영상을 사용하여 얼굴인식을 수행하는 경우 얼굴과 카메라간의 거리에 따라 얼굴 크기가 다르게 나타나 최종적으로 얼굴 인식률이 저하된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 일반 카메라를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역에서 Gabor Filter를 이용하여 계산된 얼굴 외곽선을 통해 불필요한 영역을 제거한 후 일정 크기로 얼굴 영역 크기를 정규화하였다. 정규화된 얼굴 영상을 선형 판별 분석을 통해 얼굴 특징 성분을 추출하고, 인공 신경망을 통해 학습하여 얼굴 인식을 수행한 결과 기존의 불필요 영역이 포함된 얼굴 인식 방법보다 약 13% 정도의 인식률 향상이 가능하였다.

준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구 (A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM)

  • 정재훈;윤상현;;허준
    • 한국건설관리학회논문집
    • /
    • 제17권3호
    • /
    • pp.32-42
    • /
    • 2016
  • 현재 국내 대부분의 토목 건축 구조물이 BIM 정보가 부재한 상황에서 준공 BIM(as-built BIM)의 수요가 점차 증가하고 있다. 준공 BIM 구축을 위한 공간자료 취득에는 고밀도의 포인트 클라우드를 생성할 수 있는 레이저 스캐너가 주로 활용되고 있다. 하지만 기존의 고정식 스캔 시스템은 이동이 번거롭고, 정밀한 위치 선정이 필요 하며, 스캔 자료 정합을 위해 별도의 표지를 설치하거나 공액점을 추출하는 과정이 필요하다. 본 연구에서는 수작업을 최소화하기 위해 기존의 고정식 스캔 시스템을 대체할 수 있는 이동식 스캔 시스템을 제안하고자 하며, 기반 기술로 graph-based SLAM을 적용하였다. 테스트 장비는 총 세 개의 2차원 스캐너를 탑재하고 있으며, 중앙의 한 개는 수평으로 설치되어 graph 구축을 통한 이동경로취득에 사용되었고, 좌우 두 개는 수직으로 설치되어 시스템 진행의 연직 방향으로 주변 구조물에 대한 3차원 스캔 정보 취득에 사용되었다. 개발된 graph-based SLAM은 이동경로 상에 누적된 위치오차를 해소하기 위한 loop closure 처리 방법으로 Adaboost 기계학습을 적용하였다. 이는 특히 본 연구에서 사용한 장비와 같이 기계학습을 위한 다수의 feature 정보를 제공할 수 있는 멀티 스캐너 시스템에 적합한 방식이며, 두 실내공간을 대상으로 한 테스트에서 단일 스캐너 대비 false positive rate를 각각 7.9% 및 13.6%까지 줄일 수 있었다. 최종적으로 연구대상지역의 2차원 및 3차원 지도 구축을 통해 개발된 graph-based SLAM의 효용성을 확인하였다.

걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출 (Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis)

  • 이상홍;임준식;신동근
    • 인터넷정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.13-20
    • /
    • 2010
  • 본 논문은 걸음걸이 분석 기반의 특징 추출과 NEWFM(Neural Network with Weighted Fuzzy Membership Functions)을 이용하여 건강한 사람의 족압(foot pressure)과 파킨슨병 환자의 족압으로부터 건강한 사람과 파킨슨병 환자를 분류하는 방안을 제시하고 있다. NEWFM에서 사용할 입력을 추출하기 위해서 첫 번째 단계에서는 PhysioBank에서 제공하는 족압 데이터와 시간에 따른 족압의 변화를 이용하여 각각 4개의 특징을 추출하였다. 두 번째 단계에서는 웨이블릿 변환(wavelet transform, WT)을 이용하여 이전 단계에서 추출한 8개의 특징으로부터 웨이블릿 계수를 추출하였다. 마지막 단계에서는 추출된 웨이블릿 계수들을 이용하여 통계적 기법인 주파수 분포와 주파수 변동량을 이용하여 40개의 입력을 추출하였다. NEWFM은 족압 데이터로부터 8개의 특징을 추출하여 건강한 사람과 파킨슨병 환자를 분류하였을 때 왼쪽 족압과 오른쪽 족압의 차를 이용한 특징과 시간에 따른 족압의 변화에 대한 차를 이용한 특징의 경우에 높은 정확도(accuracy)가 나타났다. 이러한 결과를 통하여 걸음걸이에 있어서 질질 끄는 특징을 보이는 파킨슨병 환자의 양쪽 족압의 차가 건강한 사람의 양쪽 족압의 차보다는 상대적으로 적다는 특징을 본 실험을 통해 확인할 수 있었다.