• 제목/요약/키워드: features geometry

검색결과 281건 처리시간 0.024초

Suture anchor selection

  • 이광원
    • 대한견주관절학회:학술대회논문집
    • /
    • 대한견주관절학회 2005년도 제3차 연수강좌
    • /
    • pp.198-205
    • /
    • 2005
  • 1. Many design features including suture type, anchor size and geometry, and anchor material, play a role in the overall strength of the anchor. In addition, technical considerations such as implant orientation, pattern, and location may affect the ultimate success of the repair. 2. Multiple fixation points provide a biomechanically sounder construct in Bankart repair. The size of the glenoid and its rim make anchor size a critical consideration in implant selection and implementation.

  • PDF

직교 회귀의 역학적 고찰 (Mechanics of orthogonal regression)

  • 채경철
    • 응용통계연구
    • /
    • 제3권1호
    • /
    • pp.47-58
    • /
    • 1990
  • 로보트화된 좌표측정기에 사용됨에 따라, 직교 회귀가 이제는 단순히 흥미로운 수학문제로 그치지 않게 되었다. 특히, 공학 전공 학생을 대상으로 하는 기초 통계학 과목에서 간단히나마 다룰만한 문제가 되었다고 본다. 직교 회귀의 핵심 개념을 간략히 정리한다. 아울러 직교 회귀의 기하학적 구조를 공학 전공 학생들이 잘 알고 있는 역학적 개념으로 설명함으로써 학생들이 쉽게 이해하고 또한 사고의 폭을 넓히는데 도움이 되고자 한다.

  • PDF

An Analysis of the Practice of Proof Education in Korea - Focused on the Middle School Geometry

  • Na, Gwi-Soo
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제2권2호
    • /
    • pp.71-78
    • /
    • 1998
  • This paper investigates the practices of proof education in Korea by analyzing the teaching and learning of proofs in classes in the second year of middle school. With this purpose, this study examines the features and deficiencies of the ways of teaching proofs and investigates the difficulties which students have in learning them. Furthermore, it suggests methods for the improvement of teaching proofs.

  • PDF

지오지브라를 이용한 3차원 구조물의 모델링 교육과 응용 (Education and Application of Modeling on 3D Structure using Geogebra)

  • 정태은;김태환
    • 한국CDE학회논문집
    • /
    • 제20권2호
    • /
    • pp.93-103
    • /
    • 2015
  • In this study, we organize and explain various ways to construct 3D models in the 2D plane using Geogebra, mathematical education software that enables us to visualize dynamically the interaction between algebra and geometry. In these ways, we construct three unit vectors for 3 dimensions at a point on the Cartesian coordinates, on the basis of which we can build up the 3D models by putting together basic mathematical objects like points, lines or planes. We can apply the ways of constructing the 3 dimensions on the Cartesian coordinates to modeling of various structures in the real world, and have chances to translate, rotate, zoom, and even animate the structures by means of slider, one of the very important functions in Geogebra features. This study suggests that the visualizing and dynamic features of Geogebra help for sure to make understood and maximize learning effectiveness on mechanical modeling or the 3D CAD.

A Deep Learning-Based Rate Control for HEVC Intra Coding

  • Marzuki, Ismail;Sim, Donggyu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a rate control algorithm for intra coding frame in HEVC encoder using a deep learning approach. The proposed algorithm is designed for CTU level bit allocation in intra frame by considering visual features spatially and temporally. Our features are generated using visual geometry group (VGG-16) with deep convolutional layers, then it is used for bit allocation per each CTU within an intra frame. According to our experiments, the proposed algorithm can achieve -2.04% Luma component BD-rate gain with minimal bit accuracy loss against the HM-16.20 rate control model.

  • PDF

초등학교 수학의 교수를 위한 모바일 가상조작물 앱 분석 (An Analysis of Mobile Virtual Manipulatives Apps for the Teaching of Elementary School Mathematics)

  • 신미경
    • 한국멀티미디어학회논문지
    • /
    • 제20권6호
    • /
    • pp.935-949
    • /
    • 2017
  • The purpose of this study was to analyze the characteristics of virtual manipulatives apps that can be used to teach students struggling to learn mathematics. To achieve this goal, ten general characteristics of 23 virtual manipulatives apps were evaluated. The instructional, interface, and interactive design features of apps were also evaluated on five-point scale ratings of 18 items. In addition, SPSS frequency analysis and the correlation between each feature was analyzed. Frequently presented instructional contents among 23 virtual manipulatives apps were geometry, arithmetic operation, number concept and measurement. The frequently presented level of instructional contents was lower grade elementary school and kindergarten age. The frequently presented instructional type was the simulation. Regarding the design features, instructional design was rated as the highest (mean = 3.7); interactive design (mean = 3.6) and interface design (mean = 3.3) were also rated higher than neural. In addition, as the learning strategy was appropriately presented, it was evaluated that there was less screen linkage and content error.

볼륨분해를 이용한 절삭가공부품 솔리드 모델의 단순화 (Decomposition-Based Simplification of Machined Part in Solid Model)

  • 우윤환
    • 한국CDE학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2007
  • As 3D solid modeling has been widely used in designing products, solid models of the products are directly used in various applications such as engineering analysis and process planing. However, the fully-detailed solid models may not be necessary in some application. For example, it is often more efficient to use simplified model of part of engineering analysis. Generation of mesh for the complex original model requires a quite amount of time, and the consequence of finite element analysis may not be desirable due to small and detailed geometry in the model. In this paper, a method to simplify solid models of machined part is presented. This method decomposes the delta volume of machined part, and uses the decomposed volumes to simplify the solid model. Since this method directly recognizes the features to be removed from the final model, it is independent of not only design features of specific CAD system, but also designer's design practice of design sequences.

Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy

  • Cimellaro, Gian Paolo;De Stefano, Alessandro
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.231-247
    • /
    • 2014
  • This paper focuses on the dynamic behaviour of Mirandola City Hall (a XV century Renaissance Palace) that was severely damaged during May 2012 Emilia earthquake in Northern Italy. Experimental investigations have been carried out on this monumental building. Firstly, detailed investigations have been carried out to identify the identification of the geometry of the main constructional parts as well as the mechanical features of the constituting materials of the palace. Then, Ambient Vibration Tests (AVT) have been applied, for the detection of the main dynamic features. Three output-only identification methods have been compared: (i) the Frequency Domain Decomposition, (ii) the Random Decrement (RD) and the (iii) Eigensystem Realization Algorithm (ERA). The modal parameters of the Palace were difficult to be identified due to the severe structural damage; however the two bending modes in the perpendicular directions were identified. The comparison of the three experimental techniques showed a good agreement confirming the reliability of the three identification methods.

볼 엔드밀 가공시 형상특징을 고려한 이송속도의 최적화에 관한 연구 (Feedrate Optimization in the Ball Endmilling Process Considering Shape Features)

  • 김병희
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.257-265
    • /
    • 1996
  • When machining of a free-form surface with a ball endmill it is very important to select proper cutting conditions considering the geometrical shape of a workpiece to make the production more effective and reduce the machining time. Even though the same cutting conditions and materials are used, the cutting system of different geometry part machining shows the different static/dynamic characteristics. In this study, through various cutting experiments, we can construct the data base of stable cutting conditions for the machining of a Zine Alloy. We can get some relational plots between the optimal feedrates and classified shape features and parameters. On the basis of these results, we can develop the feedrate optimization program OptiCode. The developed program make it possible to reduce the cutting time and increase the machining accuracies.

  • PDF

Camera Motion Parameter Estimation Technique using 2D Homography and LM Method based on Invariant Features

  • Cha, Jeong-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.297-301
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.