Suture anchor selection

을지의대

이 광원

I. Introduction

History

- Du Toit & Roux (1956): Johannesburg stapling technique
- Dr. LL Johnson

Clinical applications of suture anchors in shoulder surgery

Principally for the fixation of tendons of ligaments to bone

- Glenohumeral instability
- Rotator cuff repair
- SLAP lesion repair
- Biceps tenodesis
- Hand, elbow, knee, foot surgery

Advantages

- less exposure(arthroscopic)
- standardized load to failure properties
- better holding strength
- ease of insertion
- multiple sutures

Disadvantages

- increased costs (anchors and instruments)
- extra instrumentation
- learning curve to master
- consider "Deadman s" angle

Desirable features (Ideal Implant)

- easy to implant
- excellent pullout strength
- prevent suture abrasion
- does not "complicate" subsequent surgery
- will be bioabsorbable with no reaction from the patient as the material dissolves.

II. Biomechanical considerations in suture anchor design

- anchor pullout strength
- suture tensile strength
- anchor-suture interface

III. Implant size considerations

- must be large enough to have adequate load strength
- must be small enough to fit in the space without the tendency to come loose or damage the adjacent structures
- larger anchors are better suited for the cuff repair, smaller anchors are better for the Bankart and SLAP repairs
- (3.5 mm to 4.1 mm diameter in the maximum size for labral repair)
- Ideally, the smallest implant of sufficient strength to obtain the most stable fixation for soft-tissue healing will allow not only multiple fixation points but also minimizing articular surface compromise and maximize restoration of the normal anatomy.

IV. Implant design considerations

- anchor pullout strength
- suture-anchor interface (eyelet) design
- anchor material composition
- eyelet design and orientation

V. Suture material considerations

decreased incidence of suture breakage during knot tying, limiting anchor compromise

- strength and ease of sliding for knot tying
- knot durability related to suture slippage (unraveling)
- suture cutout through repaired tissue

VI. Potential benefits of bioabsorbable suture anchors

- greater ease of postoperative imaging
- potential restoration of bone stoke, after resorption
- ease revision surgery

VII. Knotless suture-based anchors

- Require familiarity with their use
- Provide secure suture fixation of soft tissue to bone
- Do not require knot tying
- Provide a no-profile or low-profile repair without requiring a nonsuture component of the anchor to remain intraarticular
- Suture-first technique vs. through-tissue technique

VIII. Sutureless anchors in shoulder surgery

- Bankart stabilization & rotator cuff surgery
- Simplicity of their insertion
- Overall sucess is inferior to that of suture anchors
- Possibly significant complications (inflammatory reactions, intraarticular migration, failure reduction)

IX. Potential sources of anchor failure

Goradia: - Bioabsorbable tacks/metal suture anchors/transosseous sutures

- cyclic loading, cadaver model
- No. of cycles to 100% failure: tack group >> transosseous group

Cummins: - Sheep rotator cuff model

- Bioabsorbable tacks/Mitek rotator cuff Quick Anchors
- Inferior initial load properties in bioabsorbable tacks

Wilkerson: Bioabsorbable tacks used in rotator cuff and labral repairs have been reported to break and back out from tacks s insertion point

Thal: - suture strength

- knotless suture anchor > standard suture anchors

Zumstein - Mitek G II standard metal anchor/Mitek knotless suture anchors

- cadaveric glenoids
- The standard anchor allowed significantly less suture displacement than the knotless anchor, although the ultimate tensile strength and mode of failure were similar.

Failure point of suture anchors

- at the suture-tendon interface
- in the suture substance
- at the suture-anchor interface
- in the anchor itself
- at the anchor-bone interface

Suture materials

Baber: - Biomechanical evaluation of several suture and anchor types

- No.2 Ethibond failed at 92N of load

No.5 193N of load

No.2 Panacryl(Ethicon) 99N of load

No.2, 5, 2-0 Fiberwire (Arthrex) 188N, 483N, 82N of load

- The suture anchors all failed at higher loads than their associated sutures.

Interface between the suture anchors and structure strands

Bardana: - sutures oriented at 45° to the anchor are significantly more prone to abrasion and breakage

- rotation of the suture with respect to the anchor did not significantly affect the abrasion rate of the suture.

Meyer: - increased suture abrasion at 45°

- decreased suture failure load by 73%
- anchor eyelet design may also influence suture abrasion

Anchor mechanical strength: design/material

- Biodegradable polymers, bioabsorbable suture anchors
- PLA(polylactic acid), PGA(polyglycolic acid)
- The time period of mass loss
 - molecular weight of polymer
 - crystallinity

- porosity

- advantage: little artifact generation on MRI

Avoid problems with permanent implants such as during revision

surgery

- disadvantage: more expensive

Increased wear characteristics at eyelet

Biomechanical strength of absorbable and nonabsorbable anchors

Demirhan: 75% loss of initial pullout strength of PGA wedge-type suture

anchors within the first 3 weeks compare with similar

nonabsorbable anchors

Bardana: eyelet failure in bioabsorbable anchors

Dejong: no significant differences

Suture anchor vs transosseous tunnel technique

Reed: suture anchor(in the suture) >> TTT(in the bone)

Burkart: Mitek RC > TTT

Lewis: no differences in healing time, but, anchor > TTT

Must consider: The suture type

Implant design Implant material

X. Technical considerations

Anchor orientation/Implantation patterns/Implant locations

Anchor orientation

Burkart:

- ideal orientation of suture anchors in RC => "Deadman"
- ideal angle between the anchor and pull of the RC should be ≤ 45°

Liporace: in vivo study, similar pullout strength: 30°~90°

Single or Double rows

Double row may reestablish the rotator cuff footprint

- --> may allow for better healing
- --> may restore the biomechanical properties of the healed cuff Woltrip, Demirhan:

Duel site fixation (suture anchor + TTT) > single row or TTT alone

Location: important role in anchor pullout strength

Meyer: BMD below the articular surface and in the GT in FTRCT

<< intact specimens

Baber: GT cadaver (avg. 80yrs)

- posterior area of GT > anterior
- no difference between GT, LT, humeral neck
- no correlation between BMD and suture anchor pullout strength

Tingart et al:

- CT
- total, trabecular, cortical BMD in different regions of the GT & LT
- higher BMD in posterior portion of GT
- clear association between BMD and load to failure

XI. Complications of anchor use

- failure of the tissue, suture, or anchor before healing
- Kaar (Metallic anchors)
 - extraosseous anchor placement
 - anchor migration
 - intraarticular anchor dislodgement with consequent articular damage
 - local foreign body reaction

Bioabsorbable anchors

- Inflammatory reaction

XII. Summary

- 1. Many design features including suture type, anchor size and geometry, and anchor material, play a role in the overall strength of the anchor. In addition, technical considerations such as implant orientation, pattern, and location may affect the ultimate success of the repair.
- 2. Multiple fixation points provide a biomechanically sounder construct in Bankart repair. The size of the glenoid and its rim make anchor size a critical consideration in implant selection and implementation.

REFERENCES

- Athanasiou KA, Agrawal CM, Barber FA, et al: Current Concepts: Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737, 1998
- 2. Barber FA, Feder SM, Burkhart SS, et al: The relationship of suture anchor failure and bone density to proximal humerus location: A cadaveric study. Arthroscopy 13:340-345, 1997

- 3. Barber FA, Herbert MA, Click JN: Suture anchor strength revisited. Arthroscopy 12:32-38, 1996
- Barber FA, Herbert MA, Richards DP: Sutures and suture anchors: Update 2003. Arthroscopy 19:985-990, 2003
- 5. Bardana DD, Burks RT, West JR: The effect of suture anchor design and orientation on suture abrasion: An in vitro study. Arthroscopy 19:274-281, 2003
- Cummins CA, Strickland S, Appleyard RC, et al: Rotator cuff repair with bioabsorbable screws: An in vivo and ex vivo investigation. Arthroscopy 19:239-248, 2003
- Burkhart SS: The deadman theory of suture anchors: Observations along a south Texas fence line. Arthroscopy 11:119-123, 1995
- Burkhart SS, Diaz Pagan JL, Wirth MA, et al: Cyclic loading of anchor based rotator cuff repairs: Confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy 13:720-724, 1997
- Burkart A, Imhoff AB, Roscher E: Foreign-body reaction to the bioabsorbable Suretac device. Arthroscopy 16:91-95, 2000
- 10. Chow JC, Gu Y: Material reaction to suture anchor. Arthroscopy 20: 314-316, 2004
- 11. Dejong ES, DeBerardino TM, Brooks DE, et al: In vivo comparison of a metal versus biodegradable suture anchor. Arthroscopy 20:511-516, 2004
- Demirhan M, Atalar AC, Kilicoglu O: Primary fixation strength of rotator cuff repair techniques: A comparative study. Arthroscopy 19:572-576, 2003
- 13. Demirhan M, Kilicoglu O, Akpinar S, et al: Time-dependent reduction in load to failure of wedge-type polyglyconate suture anchors. Arthroscopy 16:383-390, 2000
- Galatz LM, Ball CM, Teefey SA, et al: The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 86A:219-224, 2004
- 15. Goradia VK, Mullen DJ, Boucher HR, et al: Cyclic loading of rotator cuff repairs: A comparison of bioabsorbable tacks with metal suture anchors and transosseous sutures. Arthroscopy 17:360-364, 2001
- Kaar TK, Schenck RC Jr, Wirth MA, et al: Complications of metallic suture anchors in shoulder surgery: A report of 8 cases. Arthroscopy 17:31-37, 2001
- 17. Lewis CW, Schlegel TF, Hawkins RJ, et al: Comparison of tunnel suture and suture anchor methods as a function of time in a sheep model. Biomed Sci Instrum 35:403-408, 1999
- Liporace FA, Bono CM, Caruso SA, et al: The mechanical effects of suture anchor insertion angle for rotator cuff repair. Orthopedics 25: 399-402, 2002
- Lo IK, Burkhart SS: Double-row arthroscopic rotator cuff repair: reestablishing the footprint of the rotator cuff. Arthroscopy 19:1035-1042, 2003
- Magee T, Shapiro M, Hewell G, et al: Complications of rotator cuff surgery in which bioabsorbable anchors are used. Am J Roentgenol 181:1277-1231, 2003
- 21. Meyer DC, Felix E, Ruffieux K, et al: Influence of test temperature and test speed on the mechanical strength of absorbable suture anchors. Arthroscopy 20:185-190, 2004
- 22. Meyer DC, Fucentese SF, Koller B, et al: Association of osteopenia of the humeral head with full-thickness rotator cuff tears. J Shoulder Elbow Surg 13:333-337, 2004
- 23. Meyer DC, Nyffeler RW, Fucentese SF, et al: Failure of suture material at suture anchor eyelets. Arthroscopy 18:1013-1019, 2002
- Reed SC, Glossop N, Ogilvie-Harris DJ: Full thickness rotator cuff tears. A biomechanical comparison
 of suture versus bone anchor techniques. Am J Sports Med 24:46-48, 1996
- 25. Tauro JC: Arthroscopic rotator cuff repair: Analysis of technique and results at 2- and 3-year follow-up.

- Arthroscopy 14:45-51, 1998
- Thal R: A knotless suture anchor: Design, function, and biomechanical testing. Am J Sports Med 29:646-649, 2001
- Tingart MJ, Apreleva M, Zurakowski D, et al: Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am 85A:2190-2198, 2003
- Waltrip RL, Zheng N, Dugas JR, et al: Rotator cuff repair. A biomechanical comparison of three techniques. Am J Sports Med 31:493-497, 2003
- Warme WJ, Arciero RA, Savoie FH, et al: Nonabsorbable versus absorbable suture anchors for open Bankart repair: A prospective, randomized comparison. Am J Sports Med 27:742-746, 1999
- Wilkerson JP, Zvijac JE, Uribe JW, et al: Failure of polymerized lactic acid tacks in shoulder surgery. J Shoulder Elbow Surg 12:117-121, 2003
- 31. Zumstein M, Jacob HA, Schneeberger AG: In vitro comparison of standard and Knotless metal suture anchors. Arthroscopy 20; 517-520, 2004