• 제목/요약/키워드: features extraction

검색결과 1,480건 처리시간 0.029초

ICA+OPCA를 이용한 잡음에 강인한 뇌파 분류 (ICA+OPCA for Artifact-Robust Classification of EEG)

  • Park, Sungcheol;Lee, Hyekyoung;Park, Seungjin
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.739-741
    • /
    • 2003
  • Electroencephalogram (EEG)-based brain computer interface (BCI) provides a new communication channel between human brain and computer. EEG is very noisy data and contains artifacts, thus the extraction of features that are robust to noise and artifacts is important. In this paper we present a method with employ both independent component analysis (ICA) and oriented principal component analysis (OPCA) for artifact-robust feature extraction.

  • PDF

Euclidean 거리연산자와 결합된 상태공간 기법에 의한 영상추출 (A Study on the Extraction of Feature by State-Space Concept with Euclidean Distance Operator)

  • 최갑석;윤동한
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.846-852
    • /
    • 1986
  • An efficient and reliable method for the extraction of features is presented. The method utilizes by a state technique with Euclidean distance operator. The proposed method is compared with the Sobel Operator. Simulation results show that our method performs as well as the Sobel operator.

  • PDF

단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정 (Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm)

  • 김대성
    • 한국측량학회지
    • /
    • 제35권6호
    • /
    • pp.485-494
    • /
    • 2017
  • 본 연구는 단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용하여 특성이 다른 적외선영상 자동 기하보정에 초점을 맞추고 있다. 입력영상은 히스토그램 평활화를 통해 중앙값과 절댓값을 이용하여 전처리를 수행하였으며, 추출 피쳐의 유사도를 거리가 아닌 각 개념으로 변경하여 적용함으로써, 영상간 밝기값 차이를 줄이는데 효과적으로 적용할 수 있도록 하였다. 기하보정 결과는 시각적인 방법과 Inverse RMSE 방식을 사용하여 평가하였으며, 영상의 특성 차이로 인해 기존의 지역적 피쳐 추출기법 적용으로 해결될 수 없었던 자동 기하보정이 본 알고리즘을 적용함으로써 높은 정합 신뢰도와 적용 편의성을 보임을 확인할 수 있었다. 이를 통해, 제안 방법이 특정 조건의 다중 센서 영상간 자동 기하보정 기법 중 하나로 사용될 수 있을 것으로 기대한다.

질감과 깊이 특징 기반의 문자영역 추출 (Character Region Extraction Based on Texture and Depth Features)

  • 장석우;박영재;허문행
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.885-892
    • /
    • 2013
  • 본 논문에서는 3차원의 입체영상으로부터 질감과 깊이 특징을 활용하여 영상 내에 존재하는 문자를 효과적으로 분할하는 방법을 제안한다. 제안된 문자 분할 방법은 크게 후보 문자영역 추출 단계, 문자영역 지역화 단계, 문자와 배경영역 분리 단계, 그리고 후보 문자영역 검증 단계의 네 가지 단계로 구성된다. 후보 문자영역 추출 단계에서는 입력된 영상에서 질감 특징을 이용해 문자영역이 존재하는 후보 영역을 분할하고, 문자영역 지역화 단계에서는 후보 문자영역 중에서 문자열만을 형성하는 영역을 추출한다. 그리고 문자와 배경 분리 단계에서는 지역화된 문자영역을 문자와 배경으로 분리하며, 후보 문자영역 검증 단계에서는 거리 특징을 활용하여 추출된 문자영역이 비 문자영역을 포함하지 않고 문자영역만을 포함하고 있는지를 최종적으로 검증한다. 실험에서는 제안된 방법을 여러 가지 영상에 적용하여 테스트 해 보았으며, 제안된 방법이 기존의 방법에 비해 보다 정확하게 문자영역을 추출함을 확인하였다.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

자료별 분류분석(DDA)에 의한 특징추출 (Datawise Discriminant Analysis For Feature Extraction)

  • 박명수;최진영
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.90-95
    • /
    • 2009
  • 본 논문은 선형차원감소(Linear Dimensionality Reduction)을 위해 널리 이용되고 있는 특징추출 알고리듬인 선형판별분석(Linear Discriminant Analysis)의 문제점을 해결할 수 있는 새로운 특징추출 알고리듬을 제안한다. 선형판별분석에 포함되는 평균-자료 간 거리 및 평균-평균 간의 거리에 기반한 분산행렬은 역행렬 연산, 계수의 제한 등으로 인하여 계산상의 문제와 추출되는 특징의 수가 제한되는 한계를 가지고 있다. 또한 자료의 집단이 단일 모드의 정규 분포로부터 얻어진 것으로 가정되며 그렇지 않은 경우에 대해서는 적절한 결과를 얻을 수 없다. 본 논문에서는 자료-자료 간의 거리에 기반하고 적절하게 가중치가 추가된 새로운 행렬을 정의하였으며. 이에 기반하여 특징을 추출하는 방법을 제안하였다. 그럼으로써 앞서 선형판별분석의 여러 문제를 해결하고자 시도하였다. 제안된 방법의 성능을 실험을 통해 확인하였다.

기하학적 불변벡터기반 랜드마크 인식방법 (Landmark Recognition Method based on Geometric Invariant Vectors)

  • 차정희
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.173-182
    • /
    • 2005
  • 본 논문에서는 항해 시 위치인식에 사용하기 위하여 카메라의 뷰포인트에 무관한 랜드마크를 인식하는 방법을 제안한다. 기존연구에서 사용된 특징들은 카메라의 뷰포인트에 따라 변하고 이에따른 정보 양의 증가로 위치확인을 위한 시각적인 랜드마크의 추출이 어렵다. 본 논문에서 제안된 방법은 특징 추출단계, 학습과 인식단계, 정합단계의 삼단계로 구성된다. 특징 추출단계에서는 영상의 관심영역을 설정, 이 영역 안에서 코너점을 추출하는데, 추출 시 작은 고유값의 통계적 분석을 통해 보다 정확하고 잡음에 강한 특징을 추출하는 방법을 제안한다. 학습 및 인식단계에서는 5개의 특징점으로 구성된 특징모델이 뷰포인트에 무관한 특징점인지를 검사하여 강건 특징모델을 구성한다. 정합단계에서는 시간 복잡도를 줄이고 정확한 대응점을 산출하기 위하여 유사도 평가함수와 Graham 탐색방법을 이용한 정합 방법을 제안한다. 실험에서는 다양한 실내영상을 가지고 제안한 방법과 기존방법을 비교 분석함으로써 제안한 방법의 우수함을 보였다.

  • PDF

FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법 (A Rule Extraction Method Using Relevance Factor for FMM Neural Networks)

  • 이승강;이재혁;김호준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권5호
    • /
    • pp.341-346
    • /
    • 2013
  • 본 연구에서는 수정된 구조의 FMM 신경망으로부터 패턴 인식을 위한 규칙 추출 방법을 제안한다. 제안된 방법은 학습데이터에서 특징값에 대한 빈도 요소를 반영하는 하이퍼박스 정의를 기반으로 하는데, 이로부터 특징과 패턴클래스 간의 상호 연관도 요소를 정의 하였다. 이는 기존의 모델에서 사용되는 하이퍼박스 중첩테스트 및 축소(contraction) 기법을 사용하지 않아도 하이퍼박스의 중첩에 의한 분류의 모호성을 해결할 수 있게 한다. 본 연구에서는 패턴 클래스의 각 차원별로 퍼지 분할을 기반으로 하는 수정된 하이퍼박스 멤버쉽 함수와 이를 사용하는 학습방법을 제시한다. 제안된 기법으로부터 특정패턴의 분류를 위한 자극성(excitatory) 특징 및 억제성(inhibitory) 특징을 구분하고 이들 정보는 규칙 생성과정에 적용된다. 수화 인식에 관한 실험에 제안된 방법론을 적용함으로써 제안된 이론의 타당성을 실험적으로 고찰하였다.

칼라스케치 특징점 추출을 위한 퍼지 멤버쉽 함수의 신경회로망 학습 (An Artificial Neural Network Learning Fuzzy Membership Functions for Extracting Color Sketch Features)

  • 조성목;조옥래
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.11-20
    • /
    • 2006
  • 본 논문에서는 칼라 영상의 스케치 특징점을 추출하기 위해 퍼지신경회로망을 이용하는 방법에 대하여 설명한다. 이 신경회로망은 스케치 특징점 추출을 위한 퍼지 소속함수를 학습시킴으로써 적절한 국부 임계 치를 획득할 수 있도록 구성된다. 제안한 퍼지신경회로망의 입출력 소속함수는 표준영상으로부터 추출된 최적의 특징점 추출결과를 기반으로 구성하여 학습 데이타로 사용된다. 학습에 사용된 퍼지입력변수는 디지털 영상에서의 특징점 추출 시 국부영역 밝기를 잘 반영할 뿐만 아니라 특징점 추출성능이 매우 우수한 특성이 있으며, 이들 입력변수의 소속함수를 신경회로망으로 학습시킴으로써 매우 효과적이고 신속하게 스케치 특징점들을 추출할 수 있다. 실험결과, 소속함수로 학습된 신경회로망으로부터 얻어진 임계치를 사용한 특징점 추출이 다양한 영상에 대하여 매우 우수함을 보였다.

  • PDF

건표고의 외관특징 인식 및 추출 알고리즘 개발 (Development of Robust Feature Recognition and Extraction Algorithm for Dried Oak Mushrooms)

  • 이충호;황헌
    • Journal of Biosystems Engineering
    • /
    • 제21권3호
    • /
    • pp.325-335
    • /
    • 1996
  • 표고의 외관 특징들은 표고의 재배 시 생육상태의 정량적 측정을 위해서, 표고의 건조 시 건조 성능을 나타내는 정량적 지표로서, 그리고 건표고의 품질을 판정하는 요인으로서 중요한 역할을 한다. 본 논문에서는 컴퓨터 시각시스템 및 신경회로망 기술을 적용하여 표고의 갓 및 내피에 고루 분포되어 있는 외관특징을 정량적으로 추출하는 알고리즘을 개발하였다. 기존의 영상 처리 과정에서 유도되는 경험적 판정규칙 또는 명확한 수치적 판정조건에 의한 등급판정은 입력데이타의 결핍 또는 애매모호성에 따른 오차가 발생하기 쉽다. 신경회로망을 이용한 영상인식 기능을 도입함으로써 다양하고 애매모호한 표고의 외관 영상특징들을 효율적으로 처리하여 기존 영상처리 알고리즘에서 발생하는 오차를 개선하였다. 본 논문에서 제안하는 알고리즘은 표고의 갓과 내피면의 인식 및 특징 분할, 꼭지부의 검출, 제거 및 재생 등을 포함한다. 제안한 알고리즘에 의거하여 건표고의 등급판정에 주요한 품질인자들을 추출하고 정량화 하였다. 그리고 알고리즘의 개발은 흑백의 다치입력영상을 이용하여 수행하였다.

  • PDF