• 제목/요약/키워드: features extracting

검색결과 607건 처리시간 0.034초

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

자율 주행을 위한 심층 학습 기반 차선 인식 모델 분석 (Analysis of Deep Learning-Based Lane Detection Models for Autonomous Driving)

  • 이현종;윤의현;하정민;이재구
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.225-231
    • /
    • 2023
  • With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.

CNN의 깊은 특징과 전이학습을 사용한 보행자 분류 (Pedestrian Classification using CNN's Deep Features and Transfer Learning)

  • 정소영;정민교
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.91-102
    • /
    • 2019
  • 자율주행 시스템에서, 카메라에 포착된 영상을 통하여 보행자를 분류하는 기능은 보행자 안전을 위하여 매우 중요하다. 기존에는 HOG(Histogram of Oriented Gradients)나 SIFT(Scale-Invariant Feature Transform) 등으로 보행자의 특징을 추출한 후 SVM(Support Vector Machine)으로 분류하는 기술을 사용했었으나, 보행자 특징을 위와 같이 수동(handcrafted)으로 추출하는 것은 많은 한계점을 가지고 있다. 따라서 본 논문에서는 CNN(Convolutional Neural Network)의 깊은 특징(deep features)과 전이학습(transfer learning)을 사용하여 보행자를 안정적이고 효과적으로 분류하는 방법을 제시한다. 본 논문은 2가지 대표적인 전이학습 기법인 고정특징추출(fixed feature extractor) 기법과 미세조정(fine-tuning) 기법을 모두 사용하여 실험하였고, 특히 미세조정 기법에서는 3가지 다른 크기로 레이어를 전이구간과 비전이구간으로 구분한 후, 비전이구간에 속한 레이어들에 대해서만 가중치를 조정하는 설정(M-Fine: Modified Fine-tuning)을 새롭게 추가하였다. 5가지 CNN모델(VGGNet, DenseNet, Inception V3, Xception, MobileNet)과 INRIA Person데이터 세트로 실험한 결과, HOG나 SIFT 같은 수동적인 특징보다 CNN의 깊은 특징이 더 좋은 성능을 보여주었고, Xception의 정확도(임계치 = 0.5)가 99.61%로 가장 높았다. Xception과 유사한 성능을 내면서도 80% 적은 파라메터를 학습한 MobileNet이 효율성 측면에서는 가장 뛰어났다. 그리고 3가지 전이학습 기법중 미세조정 기법의 성능이 가장 우수하였고, M-Fine 기법의 성능은 미세조정 기법과 대등하거나 조금 낮았지만 고정특징추출 기법보다는 높았다.

개인아바타 자동 생성을 위한 얼굴 구성요소의 추출에 관한 연구 (A Study on Face Component Extraction for Automatic Generation of Personal Avatar)

  • 최재영;황승호;양영규;황보택근
    • 인터넷정보학회논문지
    • /
    • 제6권4호
    • /
    • pp.93-102
    • /
    • 2005
  • 최근 네티즌들은 사이버 공간에서 자신의 정체성을 나타내기 위해 가상 캐릭터 '아바타(Avatar)'를 많이 이용하고 있으며, 더 나아가 사용자들은 좀 더 자신과 닮은 아바타를 요구하고 있다. 본 논문은 자동 아바타 생성의 기반기술인 얼굴 영역과 구성요소의 추출에 대한 연구로써 얼굴 구성 요소의 추출은 ACM과 에지의 정보를 이용하였다. 또한 얼굴 영역의 추출은 얼굴 영역의 면적 변화량을 ACM의 외부에너지로 사용하여 저해상도의 사진에서 발생하는 조명과 화질의 열화에 의한 영향을 감소시킬 수 있었다. 본 연구의 결과로 얼굴영역 추출 성공률은 $92{\%}$로 나타났으며, 얼굴 구성 요소의 추출은 $83.4{\%}$의 성공률을 보였다. 본 논문은 향후 자동 아바타 생성 시스템에서 얼굴 영역과 얼굴 구성요소를 정확하게 추출함으로써 패턴 부위별 특징처리가 가능하게 될 것으로 예상된다.

  • PDF

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF

피부색상과 복합 특징을 이용한 유해영상 인식 (Adult Image Detection Using Skin Color and Multiple Features)

  • 장석우;최형일;김계영
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.27-35
    • /
    • 2010
  • 유해영상 검출에서 정확하게 피부 색상 영역을 획득하는 것은 매우 중요하다. 그러나 기존의 방법들은 서로 다른 인종, 조명, 화장, 사용된 카메라 등과 같은 여러 원인으로 인해 피부 색상 추출에 여전히 문제를 가지고 있으며, 사전에 미리 정해진 피부 색상 분포 모델을 이용하여 영상에서 피부 영역을 검출한다. 이러한 문제를 해결하기 위해 본 논문에서는 눈 주변 영역에서 샘플을 추출하여 입력 영상에 최적으로 적합된 피부 색상 분포 모델을 생성하여 피부 영역을 강건하게 분할하고, 분할된 피부 영역에서 성인 영상을 대표할 수 있는 특징을 추출한 후, 분할된 피부 영역이 나체의 몸체를 포함하고 있는지를 뉴럴 네트워크 다층 퍼셉트론을 통해 여러 대표적인 특징들을 통합하면서 추론하는 새로운 방법을 제안하다. 본 논문의 실험에서는 피부 색상 영역 분할과 성인영상 검출의 두 가지 성능 측면에서 제안한 방법의 성능이 기존의 방법에 비해 보다 우수함을 보인다. 본 논문에서 제안한 강건한 유해영상검출 기법은 얼굴 검출, 성인영상 필터링 등과 같은 관련된 여러 응용 분야에서 유용하게 활용될 것이라 기대된다.

칼라스케치 특징점 추출을 위한 퍼지 멤버쉽 함수의 신경회로망 학습 (An Artificial Neural Network Learning Fuzzy Membership Functions for Extracting Color Sketch Features)

  • 조성목;조옥래
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.11-20
    • /
    • 2006
  • 본 논문에서는 칼라 영상의 스케치 특징점을 추출하기 위해 퍼지신경회로망을 이용하는 방법에 대하여 설명한다. 이 신경회로망은 스케치 특징점 추출을 위한 퍼지 소속함수를 학습시킴으로써 적절한 국부 임계 치를 획득할 수 있도록 구성된다. 제안한 퍼지신경회로망의 입출력 소속함수는 표준영상으로부터 추출된 최적의 특징점 추출결과를 기반으로 구성하여 학습 데이타로 사용된다. 학습에 사용된 퍼지입력변수는 디지털 영상에서의 특징점 추출 시 국부영역 밝기를 잘 반영할 뿐만 아니라 특징점 추출성능이 매우 우수한 특성이 있으며, 이들 입력변수의 소속함수를 신경회로망으로 학습시킴으로써 매우 효과적이고 신속하게 스케치 특징점들을 추출할 수 있다. 실험결과, 소속함수로 학습된 신경회로망으로부터 얻어진 임계치를 사용한 특징점 추출이 다양한 영상에 대하여 매우 우수함을 보였다.

  • PDF

모바일 앱 악성코드 분석을 위한 학습모델 제안 (Proposal of a Learning Model for Mobile App Malicious Code Analysis)

  • 배세진;최영렬;이정수;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.455-457
    • /
    • 2021
  • 앱(App) 또는 어플리케이션이라고 부르는 응용 프로그램은 스마트폰이나 스마트TV와 같은 스마트 기기에서 사용되고 있다. 당연하게도 앱에도 악성코드가 있는데, 악성코드의 유무에 따라 정상앱과 악성앱으로 나눌 수 있다. 악성코드는 많고 종류가 다양하기 때문에 사람이 직접 탐지하기 어렵다는 단점이 있어 AI를 활용하여 악성앱을 탐지하는 방안을 제안한다. 기존 방법에서는 악성앱에서 Feature를 추출하여 악성앱을 탐지하는 방법이 대부분이었다. 하지만 종류와 수가 기하급수적으로 늘어 일일이 탐지할 수도 없는 상황이다. 따라서 기존 대부분의 악성앱에서 Feature을 추출하여 악성앱을 탐지하는 방안 외에 두 가지를 더 제안하려 한다. 첫 번째 방안은 기존 악성앱 학습을 하여 악성앱을 탐지하는 방법과 는 반대로 정상앱을 공부하여 Feature를 추출하여 학습한 후 정상에서 거리가 먼, 다시 말해 비정상(악성앱)을 찾는 것이다. 두 번째 제안하는 방안은 기존 방안과 첫 번째로 제안한 방안을 결합한 '앙상블 기법'이다. 이 두 기법은 향후 앱 환경에서 활용될 수 있도록 연구를 진행할 필요가 있다.

  • PDF

컬러 레이아웃을 이용한 키 프레임 추출 기법 (The Extracting Method of Key-frame Using Color Layout Descriptor)

  • 김소희;김형준;지수영;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.213-216
    • /
    • 2001
  • Key frame extraction is an important method of summarizing a long video. This paper propose a technique to automatically extract several key frames representative of its content from video. We use the color layout descriptor to select key frames from video. For selection of key frames, we calculate similarity of color layout features extracted from video, and extract key frames using similarity. An important aspect of our algorithm is that does not assume a fixed number of key frames per video; instead, it selects the number of appropriate key frames of summarizing a long video Experimental results show that our method using color layout descriptor can successfully select several key frames from a video, and we confirmed that the processing speed for extracting key frames from video is considerably fast.

  • PDF

지역 인테그럴 히스토그램을 사용한 빠르고 강건한 전경 추출 방법 (Fast foreground extraction with local Integral Histogram)

  • 장동현;김향화;김태용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.623-628
    • /
    • 2008
  • 본 논문에서는 비전 기반 게임 인터페이스를 위한 배경영역으로부터 전경영역을 추출하기 위해 빠르고 강건한 새로운 방법을 소개한다. Background Subtraction 방법은 추적하고자 하는 이미지의 특징을 추출하기 전에 필수적으로 거쳐야 하는 전처리 과정이다. 이를 위해 본 논문에서는 이미지를 지역 셀로 나누어 가우시안 커널이 적용된 Local Histogram을 계산하고 히스토그램의 Bhattacharyya 거리를 계산하여 전경확률을 결정한다. 이처럼 지역적 히스토그램에 기반한 방법은 급격한 조명변화나 잡음 또는 작은 배경오브젝트의 움직임에 부분적으로 강간함을 보인다. 히스토그램을 계산하는데에서 Multi-Scaled Integral Histogram을 사용하여 잡음을 억제하면서 계산의 속도를 높였다.

  • PDF