• 제목/요약/키워드: feature-based tracking

검색결과 317건 처리시간 0.031초

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.

2차원 웨이브릿 변환을 이용한 강건한 특징점 추출 및 추적 알고리즘 (Robust Feature Extraction and Tracking Algorithm Using 2-dimensional Wavelet Transform)

  • 장성군;석정엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.405-406
    • /
    • 2007
  • In this paper, we propose feature extraction and tracking algorithm using multi resolution in 2-dimensional wavelet domain. Feature extraction selects feature points using 2-level wavelet transform in interested region. Feature tracking estimates displacement between current frame and next frame based on feature point which is selected feature extraction algorithm. Experimental results show that the proposed algorithm confirmed a better performance than the existing other algorithms.

  • PDF

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제20권6호
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법 (Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset)

  • 이준하;원홍인;김병학
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

궤적 정합을 이용한 특징 기반의 차량 추적 시스템 (A Feature-based Vehicle Tracking System using Trajectory Matching)

  • 정영기;조태훈;호요성
    • 대한전자공학회논문지SP
    • /
    • 제38권6호
    • /
    • pp.648-656
    • /
    • 2001
  • 본 논문에서는 지능적인 교통감시를 위해 궤적 정합을 이용한 특징 기반의 새로운 차량 추적 시스템을 제안한다. 제안된 차량 추적 시스템의 전체적인 알고리즘은 특징 추출, 특징 추적 및 궤적 정합을 통한 그룹핑의 세 단계로 구성된다. 특징 추출 및 추적 단계에서는 입력된 영상에서 차량으로 추정할 수 있는 부속 정보를 추출하기 위해 꼭지점 추출 영상처리 기법을 적용하여 차량의 특징점으로 추출하고 선형 칼만 필터을 이용하여 특징들을 추적한다. 그룹핑 단계에서는 개별 차량에 소속된 특징점들을 하나의 그룹으로 분류한다. 이때, 특징 기반 추적방식의 문제점인 객체 중첩 문제를 해결하기 위해 특징들의 위치 정보와 궤적 정합을 이용한 새로운 그룹핑 방법을 제시한다 마지막으로, 차량들이 근접하거나 부분 겹침이 일어나는 경우의 교통영상에 적용하여 제안된 추적 시스템의 성능을 보인다.

  • PDF

광류를 사용한 빠른 자연특징 추적 (Fast Natural Feature Tracking Using Optical Flow)

  • 배병조;박종승
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.345-354
    • /
    • 2010
  • 시각기반 증강현실을 구현하기 위한 추적 방법들은 정형 패턴 마커를 가정하는 마커 추적기법과 영상 특징점을 추출하여 이를 추적하는 자연특징 추적기법으로 분류된다. 마커 추적기법은 빠른 마커의 추출 및 인식이 가능하여 모바일 기기에서도 실시간 처리가 가능하다. 한편 자연 특징 추적기법의 경우는 입력 영상의 다양성을 고려해야 하므로 계산량이 많은 처리과정을 거쳐야 한다. 따라서 저사양의 모바일 기기에서는 빠른 실시간 처리에 어려움이 있다. 기존의 자연특징 추적에서는 입력되는 카메라 영상의 매 프레임마다 특징점을 추출하고 패턴매칭 과정을 거친다. 다수의 자연특징점들을 추출하는 과정과 패턴매칭 과정은 계산량이 많아 실시간 응용에 많은 제약을 가하는 요인으로 작용한다. 특히 등록된 패턴의 개수가 증가될수록 패턴매칭 과정의 처리시간도 증가하게 된다. 본 논문에서는 이러한 단점을 해결하고자 자연특징 추적 과정에 광류를 사용하여 모바일 기기에서의 실시간 동작이 가능하도록 하였다. 패턴매칭에 사용된 특징점들은 다음의 연속 프레임에서 광류추적 기법을 적용하여 대응점들을 빠르게 찾도록 하였다. 또한 추적 과정에서 소실되는 특징점의 수에 비례하여 새로운 특징점들을 추가하여 특징점의 전체 개수는 일정 수준으로 유지되도록 하였다. 실험 결과 제안하는 추적 방법은 자연특징점 추적 시간을 상당히 단축시킬 뿐만 아니라 카메라 자세 추정 결과도 더욱 안정시킴을 보여주었다.