• 제목/요약/키워드: feature vector selection

검색결과 180건 처리시간 0.028초

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • ;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

Multi-class SVM을 이용한 회전기계의 결함 진단 (Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines)

  • 황원우;양보석
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

SVM을 이용한 웨이블릿기반 프로파일분류에 관한 연구 (A Wavelet-based Profile Classification using Support Vector Machine)

  • 김성준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.3-6
    • /
    • 2008
  • 베어링은 각종 설비에서 활용하는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산웨이블릿변환을 통해 분석되고, 분해수준별 웨이블릿계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 네트워크를 제안한다.

  • PDF

Multi-class SVM을 이용한 회전기계의 결함 진단 (Fault diagnosis of rotating machinery using multi-class support vector machines)

  • 황원우;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Feature Selection Using Submodular Approach for Financial Big Data

  • Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1306-1325
    • /
    • 2019
  • As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.

음성신호기반의 감정분석을 위한 특징벡터 선택 (Discriminative Feature Vector Selection for Emotion Classification Based on Speech.)

  • 최하나;변성우;이석필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1391-1392
    • /
    • 2015
  • 최근 컴퓨터 기술이 발전하고, 컴퓨터의 형태가 다양해지면서 여러 wearable device들이 생겨났다. 이에 따라 휴먼 인터페이스 기술에서 사람의 감정정보가 중요해졌고, 감정인식에 대한 연구들이 많이 진행 되어 왔다. 본 논문에서는 감정분석에 적합한 특징벡터를 제시하고자 한다. 이를 위해 사람의 감정을 보통, 기쁨, 슬픔, 화남 4가지로 분류하고 방송매체를 통하여 잡음 없이 녹음하였다. 특징벡터는 MFCC, LPC, LPCC 3가지를 추출하였고 Bhattacharyya거리 측정을 통하여 분리도를 비교하였다.

  • PDF

지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석 (An analysis of Speech Acts for Korean Using Support Vector Machines)

  • 은종민;이성욱;서정연
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.365-368
    • /
    • 2005
  • 본 연구에서는 지지 벡터 기계(Support Vector Machines)를 이용하여 한국어 대화의 화행을 분석하는 방법을 제안한다. 우리는 발화의 어휘 및 품사와 이진 품사 쌍을 문장 자질로 사용하고 이전 발화의 문맥을 문맥 발화로 사용한다. 카이 제곱 통계량을 이용해 적절한 자질을 선택하고 선택된 자질로 지지 벡터 기계를 학습하였다. 학습된 지지 벡터 기계 분류기를 이용하여 각 발화의 화행을 분석하였다. 호텔 예약 영역의 말뭉치에 대해 제안된 시스템을 이용하여 실험한 결과 약 $90.54\%$의 정확률을 얻었다.