• Title/Summary/Keyword: feature space

Search Result 1,362, Processing Time 0.027 seconds

Face Recognition using the Feature Space and the Image Vector (세그멘테이션에 의한 특징공간과 영상벡터를 이용한 얼굴인식)

  • 김선종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.821-826
    • /
    • 1999
  • This paper proposes a face recognition method using feature spaces and image vectors in the image plane. We obtain the 2-D feature space using the self-organizing map which has two inputs from the axis of the given image. The image vector consists of its weights and the average gray levels in the feature space. Also, we can reconstruct an normalized face by using the image vector having no connection with the size of the given face image. In the proposed method, each face is recognized with the best match of the feature spaces and the maximum match of the normally retrieval face images, respectively. For enhancing recognition rates, our method combines the two recognition methods by the feature spaces and the retrieval images. Simulations are conducted on the ORL(Olivetti Research laboratory) images of 40 persons, in which each person has 10 facial images, and the result shows 100% recognition and 14.5% rejection rates for the 20$\times$20 feature sizes and the 24$\times$28 retrieval image size.

  • PDF

GMM Based Voice Conversion Using Kernel PCA (Kernel PCA를 이용한 GMM 기반의 음성변환)

  • Han, Joon-Hee;Bae, Jae-Hyun;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity (스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘)

  • Park, Yong-Hee;Kwon, Oh-Seok
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.85-95
    • /
    • 2005
  • This study proposes a method of feature point extraction using scale-space filtering and a feature point tracking algorithm based on a texturedness similarity comparison, With well-defined operators one can select a scale parameter for feature point extraction; this affects the selection and localization of the feature points and also the performance of the tracking algorithm. This study suggests a feature extraction method using scale-space filtering, With a change in the camera's point of view or movement of an object in sequential images, the window of a feature point will have an affine transform. Traditionally, it is difficult to measure the similarity between correspondence points, and tracking errors often occur. This study also suggests a tracking algorithm that expands Shi-Tomasi-Kanade's tracking algorithm with texturedness similarity.

  • PDF

A Study of the Law School Library Design Feature & Spatial Composition (법학전문도서관 디자인 특성 및 공간구성방법에 관한 연구)

  • Choi, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2812-2825
    • /
    • 2012
  • The purpose of this study was to analyze the spacial composition feature of Law School Library and define the feature in spacial planning of law school library. Through the analysis of characteristics in spacial composition, the basic spacial type of law school library will be proposed as a new law school library design. The spatial composition characteristics of Law school Library are as followings. (1) Entry spatial feature for the user accessibility (2) Reference room spatial planning for carrel user (3) Connectivity of educational & research space and reference room space. As the result of design proposal and analyzing the spacial feature, firstly entry common space of library should be planned with reference room space. Secondly, reading room should be linked to the entry level for the user. Lastly, core space should be planned as the vertical connectivity space for the intimately linkage of educational & research space and reference room. And separated accessibility should be considered for direct connection from outdoor space.

Analysis of Classification Accuracy for Multiclass Problems (다중 클래스 분포 문제에 대한 분류 정확도 분석)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

A Novel Statistical Feature Selection Approach for Text Categorization

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1397-1409
    • /
    • 2017
  • For text categorization task, distinctive text features selection is important due to feature space high dimensionality. It is important to decrease the feature space dimension to decrease processing time and increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature selection approach. This approach measures the term distribution in all collection documents, the term distribution in a certain category and the term distribution in a certain class relative to other classes. The proposed method results show its superiority over the traditional feature selection methods.

Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space (Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Finding the best suited autoencoder for reducing model complexity

  • Ngoc, Kien Mai;Hwang, Myunggwon
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.9-22
    • /
    • 2021
  • Basically, machine learning models use input data to produce results. Sometimes, the input data is too complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data preprocessing step for constructing a proper feature set to improve the performance of such models. One of the most efficient methods for automating feature engineering is the autoencoder, which transforms the data from its original space into a latent space. However certain factors, including the datasets, the machine learning models, and the number of dimensions of the latent space (denoted by k), should be carefully considered when using the autoencoder. In this study, we design a framework to compare two data preprocessing approaches: with and without autoencoder and to observe the impact of these factors on autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The empirical results provide a perspective regarding the best suited autoencoder for these factors.