• Title/Summary/Keyword: feature reconstruction

Search Result 217, Processing Time 0.025 seconds

CT Observation of Alloplastic Materials Used in Blow Out Fracture (안와골절 정복술에 사용된 인공삽입물의 전산화단층촬영 추적관찰)

  • Lee, Won;Kang, Dong-Hee
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.380-384
    • /
    • 2010
  • Purpose: Distinguishing different types of implants and assessing the position and size of implants by radiologic exam after orbital wall reconstruction is important in determining the surgery outcome and forecasting prognosis. We observed time-dependent density changes in three types of implants (porous polyethylene, resorbing plate and titanium mesh plate) by performing facial bone CT after orbital wall reconstructions. Methods: A total of 32 patients, who had underwent orbital wall fracture surgery from October 2006 to March 2009 and received facial bone CT as outpatients at 1 postoperative year were included in the study. Follow-up facial bone CT was performed on the patients pre- operatively, 1 month post-operatively, and 1 year post-operatively to observe the status of the orbital implants. Medpor $^{(R)}$ (Porex Surgical, Inc., Newnan, Ga.) was used as porous polyethylene and followed-up in 14 cases; for resorbing plate, Synthes mesh plate (Synthes, Oberdorf, Switzerland) was used in the reconstruction, and followed-up in 11 cases; and titanium mesh plate usage was followed-up in 7 cases. Computed tomographic scan (CT) and water's view were done for radiography, and hounsfield unit (HU) was used to compare density of those facial bone CT. Wilcoxon signed rank test was applied to statistically verify measurement difference in each group of hounsfield units. Results: Facial bone CT examination performed in 1 month post-operative showed that the density of porous polyethylene, resorbing plate and titanium mesh plate were -42.07, 105.67 and 539.48 on average, respectively. Among the three types of implants, titanium mesh plate showed the highest density due to its radiopaque feature. Following up the density of three types of implants in CT during 1 year after the orbital wall fracture surgery, the density of porous polyethylene increased in 10.52 House Field Units and the resorbing plate was decreased in 26.87 HouseField Units. There were no significant differences between densities in 1 month post-operatively and 1 year post-operatively in each group ($p{\geq}0.05$). Conclusion: We performed facial bone CT on patients with orbital fractures during follow-up period, distinguishing the types of implants by the different concentration of implant density, and the densities showed little change even at 1 year post-operative. To observe how implant densities change in facial bone CT, further studies with longer follow-up periods should be carried out.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.

Automatic Tracking of Retinal Vessels by Analyzing Local Feature Points in IndoCyanine Green Retinal Images (ICG 망막영상에서 국부적 특징점 분석에 의한 혈관의 자동 추적)

  • Lim, Moon-Chul;Kim, Woo-Saeng
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • During the last few years, the extraction and reconstruction of the blood vessels in the medical image has been actively researched and the analysis for the retinal vessel structure has provided important information for diagnosis and remedy of the retinopathy patients. In this research, we propose the algorithm that tracks automatically the entire retinal vessel in retinal image acquired by the ICG(IndoCyanine Green) technology. This algorithm extracts contours and centers by estimating the local maxima and processing directions and detects bifurcations and junctions by comparing direction components of the local maxima from the gradient magnitude profile of each blood vessel. We present experimental results that the entire blood vessel is automatically reconstructed and is excellent in accuracy and connectivity after applying our algorithm to the ICG retinal images of patients.

Reconstructing Occluded Facial Components using Support Vector Data Description (지지 벡터 데이터 기술을 이용한 가려진 얼굴 요소 복원)

  • Kim, Kyoung-Ho;Chung, Yun-Su;Lee, Sang-Woong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2010
  • Even though face recognition researches have been developed for a long ago, there is no practical face recognition system in real life. It is caused by several real situations where non-facial components such as glasses, scarf, and hair occlude facial components while facial images in a face database are well designed. This occlusion decreases recognition performance. Previous approaches in recent years have tried to solve non-facial components but have not resulted in enough performance. In this paper, we propose a method to handle this problem based on support vector data description, which trains the hyperball in feature space to find the minimum distance estimating the approximated face. In order to evaluate its performance and validate the effectiveness of the proposed method, we make several experiments and the results show that the proposed method has a considerable effectiveness.

A Study on a 3D Modeling for surface Inspection of a Moving Object (비등속 이동물체의 표면 검사를 위한 3D 모델링 기술에 관한 연구)

  • Ye, Soo-Young;Yi, Young-Youl;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-constant velocity moving object. 1'lie laser lines reflect tile surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. In this paper, we use multi-line laser to improve the single stripe method and high speed of single frame. Binarization and edge extraction of frame image were proposed for robust laser each line extraction. A new labeling method was used for laser line labeling. We acquired some feature points for image matching from the frame data and juxtaposed the frames data to obtain a 3D shape image. We verified the superiority of proposed method by applying it to inspect container's damages.

  • PDF

ECG signal compression based on B-spline approximation (B-spline 근사화 기반의 심전도 신호 압축)

  • Ryu, Chun-Ha;Kim, Tae-Hun;Lee, Byung-Gook;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.653-659
    • /
    • 2011
  • In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.