• Title/Summary/Keyword: feature recognition

Search Result 2,577, Processing Time 0.026 seconds

A basic research for knowledge-based management of feature recognition rules (형상인식 규칙의 지식 베이스 운용에 관한 연구)

  • 박재홍;반갑수;이석희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.715-719
    • /
    • 1991
  • In manufacturing process, usually 2-dimensional part drawing is used as a basic data. If a designer wants to recognize 2-dimensional drawing and formulate 3-dimensional shape, a proper feature recognition rule is required as a prerequisite step. These rules are converted Into knowledge base, should be ed separately in the recognition program and can be referenced In similar way of database application. In this paper, basic feature recognition rules are addressed in structure type knowledge base, and the application system is formulated which can be operated separately with existing data driven program.

  • PDF

A Study on Adaptive Feature-Factors Based Fingerprint Recognition (적응적 특징요소 기반의 지문인식에 관한 연구)

  • 노정석;정용훈;이상범
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1799-1802
    • /
    • 2003
  • This paper has been studied a Adaptive feature-factors based fingerprints recognition in many biometrics. we study preprocessing and matching method of fingerprints image in various circumstances by using optical fingerprint input device. The Fingerprint Recognition Technology had many development until now. But, There is yet many point which the accuracy improves with operation speed in the side. First of all we study fingerprint classification to reduce existing preprocessing step and then extract a Feature-factors with direction information in fingerprint image. Also in the paper, we consider minimization of noise for effective fingerprint recognition system.

  • PDF

A Study on Spoken Digits Analysis and Recognition (숫자음 분석과 인식에 관한 연구)

  • 김득수;황철준
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • This paper describes Connected Digit Recognition with Considering Acoustic Feature in Korea. The recognition rate of connected digit is usually lower than word recognition. Therefore, speech feature parameter and acoustic feature are employed to make robust model for digit, and we could confirm the effect of Considering. Acoustic Feature throughout the experience of recognition. We used KLE 4 connected digit as database and 19 continuous distributed HMM as PLUs(Phoneme Like Units) using phonetical rules. For recognition experience, we have tested two cases. The first case, we used usual method like using Mel-Cepstrum and Regressive Coefficient for constructing phoneme model. The second case, we used expanded feature parameter and acoustic feature for constructing phoneme model. In both case, we employed OPDP(One Pass Dynamic Programming) and FSA(Finite State Automata) for recognition tests. When appling FSN for recognition, we applied various acoustic features. As the result, we could get 55.4% recognition rate for Mel-Cepstrum, and 67.4% for Mel-Cepstrum and Regressive Coefficient. Also, we could get 74.3% recognition rate for expanded feature parameter, and 75.4% for applying acoustic feature. Since, the case of applying acoustic feature got better result than former method, we could make certain that suggested method is effective for connected digit recognition in korean.

  • PDF

Exploiting Chaotic Feature Vector for Dynamic Textures Recognition

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4137-4152
    • /
    • 2014
  • This paper investigates the description ability of chaotic feature vector to dynamic textures. First a chaotic feature and other features are calculated from each pixel intensity series. Then these features are combined to a chaotic feature vector. Therefore a video is modeled as a feature vector matrix. Next by the aid of bag of words framework, we explore the representation ability of the proposed chaotic feature vector. Finally we investigate recognition rate between different combinations of chaotic features. Experimental results show the merit of chaotic feature vector for pixel intensity series representation.

3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition (포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소)

  • Kyoung, Dong-Wuk;Lee, Yun-Li;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.435-448
    • /
    • 2008
  • 3D posture recognition is a solution to overcome the limitation of 2D posture recognition. There are many researches carried out for 3D posture recognition using 3D data. The 3D data consist of massive surface points which are rich of information. However, it is difficult to extract the important features for posture recognition purpose. Meanwhile, it also consumes lots of processing time. In this paper, we introduced a dimension reduction method that transform 3D surface points of an object to 2D data representation in order to overcome the issues of feature extraction and time complexity of 3D posture recognition. For a better feature extraction and matching process, a cylindrical boundary is introduced in meshless parameterization, its offer a fast processing speed of dimension reduction process and the output result is applicable for recognition purpose. The proposed approach is applied to hand and human posture recognition in order to verify the efficiency of the feature extraction.

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

Slow Feature Analysis for Mitotic Event Recognition

  • Chu, Jinghui;Liang, Hailan;Tong, Zheng;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1670-1683
    • /
    • 2017
  • Mitotic event recognition is a crucial and challenging task in biomedical applications. In this paper, we introduce the slow feature analysis and propose a fully-automated mitotic event recognition method for cell populations imaged with time-lapse phase contrast microscopy. The method includes three steps. First, a candidate sequence extraction method is utilized to exclude most of the sequences not containing mitosis. Next, slow feature is learned from the candidate sequences using slow feature analysis. Finally, a hidden conditional random field (HCRF) model is applied for the classification of the sequences. We use a supervised SFA learning strategy to learn the slow feature function because the strategy brings image content and discriminative information together to get a better encoding. Besides, the HCRF model is more suitable to describe the temporal structure of image sequences than nonsequential SVM approaches. In our experiment, the proposed recognition method achieved 0.93 area under curve (AUC) and 91% accuracy on a very challenging phase contrast microscopy dataset named C2C12.

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.

Comparison of the recognition performance of Korean connected digit telephone speech depending on channel compensation methods and feature parameters (채널보상기법 및 특징파라미터에 따른 한국어 연속숫자음 전화음성의 인식성능 비교)

  • Jung Sung Yun;Kim Min Sung;Son Jong Mok;Bae Keun Sung;Kim Sang Hun
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.201-204
    • /
    • 2002
  • As a preliminary study for improving recognition performance of the connected digit telephone speech, we investigate feature parameters as well as channel compensation methods of telephone speech. The CMN and RTCN are examined for telephone channel compensation, and the MFCC, DWFBA, SSC and their delta-features are examined as feature parameters. Recognition experiments with database we collected show that in feature level DWFBA is better than MFCC and for channel compensation RTCN is better than CMN. The DWFBA+Delta_ Mel-SSC feature shows the highest recognition rate.

  • PDF

A study on the speech feature extraction based on the hearing model (청각 모델에 기초한 음성 특징 추출에 관한 연구)

  • 김바울;윤석현;홍광석;박병철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.131-140
    • /
    • 1996
  • In this paper, we propose the method that extracts the speech feature using the hearing model through signal precessing techniques. The proposed method includes following procedure ; normalization of the short-time speech block by its maximum value, multi-resolution analysis using the discrete wavelet transformation and re-synthesize using thediscrete inverse wavelet transformation, differentiation after analysis and synthesis, full wave rectification and integration. In order to verify the performance of the proposed speech feature in the speech recognition task, korean digita recognition experiments were carried out using both the dTW and the VQ-HMM. The results showed that, in case of using dTW, the recognition rates were 99.79% and 90.33% for speaker-dependent and speaker-independent task respectively and, in case of using VQ-HMM, the rate were 96.5% and 81.5% respectively. And it indicates that the proposed speech feature has the potentials to use as a simple and efficient feature for recognition task.

  • PDF