• Title/Summary/Keyword: feature projection

Search Result 217, Processing Time 0.02 seconds

Image Feature Extraction Using Energy field Analysis (에너지장 해석을 통한 영상 특징량 추출 방법 개발)

  • 김면희;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

Blur-Invariant Feature Descriptor Using Multidirectional Integral Projection

  • Lee, Man Hee;Park, In Kyu
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.502-509
    • /
    • 2016
  • Feature detection and description are key ingredients of common image processing and computer vision applications. Most existing algorithms focus on robust feature matching under challenging conditions, such as inplane rotations and scale changes. Consequently, they usually fail when the scene is blurred by camera shake or an object's motion. To solve this problem, we propose a new feature description algorithm that is robust to image blur and significantly improves the feature matching performance. The proposed algorithm builds a feature descriptor by considering the integral projection along four angular directions ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, and $135^{\circ}$) and by combining four projection vectors into a single highdimensional vector. Intensive experiment shows that the proposed descriptor outperforms existing descriptors for different types of blur caused by linear motion, nonlinear motion, and defocus. Furthermore, the proposed descriptor is robust to intensity changes and image rotation.

Rotation and Translation Invariant Feature Extraction Using Angular Projection in Frequency Domain (주파수 영역에서 각도 투영법을 이용한 회전 및 천이 불변 특징 추출)

  • Lee, Bum-Shik;Kim, Mun-Churl
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 2006
  • This paper presents a new approach to translation and rotation invariant feature extraction for image texture retrieval. For the rotation invariant feature extraction, we invent angular projection along angular frequency in Polar coordinate system. The translation and rotation invariant feature vector for representing texture images is constructed by the averaged magnitude and the standard deviations of the magnitude of the Fourier transform spectrum obtained by the proposed angular projection. In order to easily implement the angular projection, the Radon transform is employed to obtain the Fourier transform spectrum of images in the Polar coordinate system. Then, angular projection is applied to extract the feature vector. We present our experimental results to show the robustness against the image rotation and the discriminatory capability for different texture images using MPEG-7 data set. Our Experiment result shows that the proposed rotation and translation invariant feature vector is effective in retrieval performance for the texture images with homogeneity, isotropy and local directionality.

  • PDF

Feature Extraction of Handwritten Numerals using Projection Runlength (Projection Runlength를 이용한 필기체 숫자의 특징추출)

  • Park, Joong-Jo;Jung, Soon-Won;Park, Young-Hwan;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.818-823
    • /
    • 2008
  • In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.

Quantitative Evaluation of Nonlinear Shape Normalization Methods for the Recognition of Large-Set Handwrittern Characters (대용량 필기체 문자 인식을 위한 비선형 형태 정규화 방법의 정량적 평가)

  • 이성환;박정선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.84-93
    • /
    • 1993
  • Recently, several nonlinear shape normalization methods have been proposed in order to compensate for the shape distortions in handwritten characters. In this paper, we review these nonlinear shape normalization methods from the two points of view : feature projection and feature density equalization. The former makes feature projection histogram by projecting a certain feature at each point of input image into horizontal-or vertical-axis and the latter equalizes the feature densities of input image by re-sampling the feature projection histogram. A systematic comparison of these methods has been made based on the following criteria: recognition rate, processing speed, computational complexity and measure of variation. Then, we present the result of quantitative evaluation of each method based on these criteria for a large variety of handwritten Hangul syllables.

  • PDF

An Efficient Face Recognition using Feature Filter and Subspace Projection Method

  • Lee, Minkyu;Choi, Jaesung;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.64-66
    • /
    • 2015
  • Purpose : In this paper we proposed cascade feature filter and projection method for rapid human face recognition for the large-scale high-dimensional face database. Materials and Methods : The relevant features are selected from the large feature set using Fast Correlation-Based Filter method. After feature selection, project them into discriminant using Principal Component Analysis or Linear Discriminant Analysis. Their cascade method reduces the time-complexity without significant degradation of the performance. Results : In our experiments, the ORL database and the extended Yale face database b were used for evaluation. On the ORL database, the processing time was approximately 30-times faster than typical approach with recognition rate 94.22% and on the extended Yale face database b, the processing time was approximately 300-times faster than typical approach with recognition rate 98.74 %. Conclusion : The recognition rate and time-complexity of the proposed method is suitable for real-time face recognition system on the large-scale high-dimensional face database.

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Segmentation of the Lip Region by Color Gamut Compression and Feature Projection (색역 압축과 특징치 투영을 이용한 입술영역 분할)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1279-1287
    • /
    • 2018
  • In this paper, a new type of color coordinate conversion is proposed as modified CIEXYZ from RGB to compress the color gamut. The proposed segmentation includes principal component analysis for the optimal projection of a feature vector into a one-dimensional feature. The final step adopted for lip segmentation is Otsu's threshold for a two-class problem. The performance of the proposed method was better than that of conventional methods, especially for the chromatic feature.

Electronic Image Stabilization for Portable Thermal Image Camera (휴대용 열 영상 관측 장비를 위한 전자적 영상 안정화)

  • Kim, Jong-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.288-293
    • /
    • 2016
  • Electronic Image Stabilization(EIS) is widely used as a technique for correcting a shake of an image. The case requiring the EIS function has been increased in high magnification thermal image observation on portable military equipment. Projection Algorithm(PA) for EIS is easy to implement but its performance is sensitive to the projection area. Especially, projection profiles of thermal image have very modest change and are difficult to extract image shifts between frames. In this paper, we proposed algorithm to extract a feature image for the thermal image and compared Block Matching Algorithm(BMA) with PA using our proposed feature image. When using our proposed feature image, BMA was simply implemented using FPGA's internal small memory. And we were able to obtain 30 % PSNR improved results compared to PA.