• Title/Summary/Keyword: feature point matching

Search Result 193, Processing Time 0.039 seconds

INTERACTIVE FEATURE EXTRACTION FOR IMAGE REGISTRATION

  • Kim Jun-chul;Lee Young-ran;Shin Sung-woong;Kim Kyung-ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • This paper introduces an Interactive Feature Extraction (!FE) approach for the registration of satellite imagery by matching extracted point and line features. !FE method contains both point extraction by cross-correlation matching of singular points and line extraction by Hough transform. The purpose of this study is to minimize user's intervention in feature extraction and easily apply the extracted features for image registration. Experiments with these imagery dataset proved the feasibility and the efficiency of the suggested method.

  • PDF

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Integrated SIFT Algorithm with Feature Point Matching Filter for Relative Position Estimation (특징점 정합 필터 결합 SIFT를 이용한 상대 위치 추정)

  • Gwak, Min-Gyu;Sung, Sang-Kyung;Yun, Suk-Chang;Won, Dae-Hee;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.759-766
    • /
    • 2009
  • The purpose of this paper is an image processing algorithm development as a base research achieving performance enhancement of integrated navigation system. We used the SIFT (Scale Invariant Feature Transform) algorithm for image processing, and developed feature point matching filter for rejecting mismatched points. By applying the proposed algorithm, it is obtained better result than other methods of parameter tuning and KLT based feature point tracking. For further study, integration with INS and algorithm optimization for the real-time implementation are under investigation.

3D feature point extraction technique using a mobile device (모바일 디바이스를 이용한 3차원 특징점 추출 기법)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.256-257
    • /
    • 2022
  • In this paper, we introduce a method of extracting three-dimensional feature points through the movement of a single mobile device. Using a monocular camera, a 2D image is acquired according to the camera movement and a baseline is estimated. Perform stereo matching based on feature points. A feature point and a descriptor are acquired, and the feature point is matched. Using the matched feature points, the disparity is calculated and a depth value is generated. The 3D feature point is updated according to the camera movement. Finally, the feature point is reset at the time of scene change by using scene change detection. Through the above process, an average of 73.5% of additional storage space can be secured in the key point database. By applying the algorithm proposed to the depth ground truth value of the TUM Dataset and the RGB image, it was confirmed that the\re was an average distance difference of 26.88mm compared with the 3D feature point result.

  • PDF

Fast Stitching Algorithm by using Feature Tracking (특징점 추적을 통한 다수 영상의 고속 스티칭 기법)

  • Park, Siyoung;Kim, Jongho;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 2015
  • Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Faster D2-Net for Screen Image Matching (스크린 이미지 매칭을 위한 Faster D2-Net)

  • Chun, Hye-Won;Han, Seong-Soo;Jeong, Chang-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.429-432
    • /
    • 2021
  • 스마트 기기와 애플리케이션의 테스트를 위해 빠르고 정확하게 스마트 기기 화면 상에서 테스트가 필요한 위치를 추출해야 한다. 필요한 위치를 추출할 때 스마트 기기 화면과 테스트할 수 있는 영역의 매칭 방식을 사용하는데 이를 위해 이미지의 변형이 발생해도 원하는 영역의 matching point 을 빠르고 정확하게 추출하는 feature matching 방식의 D2-Net 의 feature extraction 모델과 fitting algorithm 을 변경하였다.

Classification of Feature Points Required for Multi-Frame Based Building Recognition (멀티 프레임 기반 건물 인식에 필요한 특징점 분류)

  • Park, Si-young;An, Ha-eun;Lee, Gyu-cheol;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.317-327
    • /
    • 2016
  • The extraction of significant feature points from a video is directly associated with the suggested method's function. In particular, the occlusion regions in trees or people, or feature points extracted from the background and not from objects such as the sky or mountains are insignificant and can become the cause of undermined matching or recognition function. This paper classifies the feature points required for building recognition by using multi-frames in order to improve the recognition function(algorithm). First, through SIFT(scale invariant feature transform), the primary feature points are extracted and the mismatching feature points are removed. To categorize the feature points in occlusion regions, RANSAC(random sample consensus) is applied. Since the classified feature points were acquired through the matching method, for one feature point there are multiple descriptors and therefore a process that compiles all of them is also suggested. Experiments have verified that the suggested method is competent in its algorithm.

A Feature Point Tracking Method By Using Template Matching and Buffer (템플릿 매칭과 버퍼를 이용한 특징점 추적 방법)

  • Cho, Jeong-Hyun;Ahn, Cheol-Woong;Jun, Jae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.173-179
    • /
    • 2014
  • Today, a surgery for cataract of Korean society frequently come to operation. A method for treating cataracts have been developed in various ways. Widely used method is a method to use the artificial lens and replace it with the existing lens. The surgery can be inserted exactly according to the angle and points that are calculated in advance in the intraocular lens insertion is important. However, The lens insertion point can delete or blur the display due to such factors as foreign material coming out of the eye during surgery. Therefore, The lens insertion point needs a method of tracking the image processing by receiving the camera images in real time display method. In this paper, we propose a feature point tracking method by using template matching and buffer. a simulation results show that our ideas can track a feature point of the intraocular lens insertion.

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF