• 제목/요약/키워드: feature model validation

검색결과 110건 처리시간 0.022초

머신러닝 기법을 이용한 약물 분류 방법 연구 (A Study on the Drug Classification Using Machine Learning Techniques)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.8-16
    • /
    • 2024
  • 본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.

남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션 (Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea)

  • 김경옥;최병호;이한수;육진희
    • 한국해안·해양공학회논문집
    • /
    • 제30권2호
    • /
    • pp.69-83
    • /
    • 2018
  • 남중국해는 심해 분지, 대륙 붕단, 얕은 대륙붕, 많은 해협, 복잡한 수심 특징을 가진 전형적인 연안 영해이다. 본 연구에서는, 비구조 격자 기반으로 대상 해역을 상세하게 해상할 수 있으며, 개방경계에 조석을, 해표면에 기상자료를 입력하여 조석 및 폭풍해일을 모의할 수 있는 수치 모델을 구축하여 남중국해의 조석 특성과 전파 양상을 조사하고, 태풍에 의한 폭풍해일을 재현하였다. 태풍에 의한 폭풍해일 모의는, 2013년에 필리핀에 막대한 피해를 초래하였던 태풍 하이옌에 대해서 수행하였다. 관측치 및 선행 연구의 조석 분포와의 비교 결과, 4개의 주요 분조의 진폭과 위상은 대체적으로 잘 모의되었다. 선행 연구들에 따르면, 당 해역은 모델을 이용하여 조석을 예측하기가 어렵다고 보고되고 있는데, 이 점을 감안한다면 본 연구에서 예측한 조석은 허용 범위에 있다고 생각된다. 본 연구에서 수행한 자유 진동 모드 실험을 통해서 남중국해가 일주조 조석이 우세한 이유를 알 수 있었으며, 조석 잔차류(tidal residual current) 및 총에너지 소실(total energy dissipation) 산정을 통해서 조석 및 퇴적환경을 파악하였다. 본 연구에서 구축한 모델을 이용하여 태풍 하이옌에 의한 폭풍해일을 타당하게 모의하였으며, 모델 검증 및 조석 환경 규명을 통하여 남중국해의 지역 실시간 순압 조석/수위 예측 시스템을 구축하였다.

개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형 (The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition)

  • 정민규;김재경
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.39-57
    • /
    • 2012
  • 최근 기존 전시 공간 내에 유비쿼터스 환경이 구축되면서, 관객과의 상호작용을 통해 전시 효과를 배가할 수 있는 인터랙티브 전시에 많은 사람들의 관심이 집중되고 있다. 이러한 인터랙티브 전시가 보다 고도화되기 위해서는 전시물에 대한 다양한 관객 반응을 측정하고, 이를 통해 대상 관객이 어떤 감정을 느끼는지 예측할 수 있는 적절한 의사결정지원 모형이 요구된다. 이러한 배경에서 본 연구는 인터랙티브 전시 공간 내에서 수집 가능한 다양한 관객 반응 중 얼굴표정의 변화를 이용하여, 관객의 감정을 추론, 판단하는 지능형 모형을 제시한다. 본 연구에서 제시하는 모형은 무자극 상태의 관객의 표정과 자극이 주어졌을 때 관객의 표정이 어떻게 변화하는지 변화량을 측정하여, 이를 기반으로 인공신경망 기법을 이용해 해당 관객의 감정을 판단하는 모형이다. 이 때, 제안모형의 감정 분류체계로는 간결하면서도 실무에 적용이 용이하여 그간 기존 문헌에서 널리 활용되어 온 매력-각성(Valence-Arousal) 모형을 사용한다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 2011 서울 DMC 컬쳐 오픈 행사에 참여하여, 일반인을 대상으로 얼굴 표정 변화 데이터를 수집하고, 이들이 느끼는 감정 상태를 설문조사하였다. 그리고 나서, 이 자료들을 대상으로 본 연구에서 제안하는 모형을 적용해 보고, 제안모형이 비교모형으로 설정된 통계기반 예측모형에 비해 더 우수한 성과를 보이는지 확인해 보았다. 실험 결과, 본 연구에서 제시하는 모형이 비교 모형인 중회귀분석 모형보다 더 우수한 결과를 제공함을 확인할 수 있었다. 본 연구를 통하여 구축된 관객 감정 판단 모형을 실제 전시장에서 활용한다면 전시물을 관람하는 관객의 반응에 따라 시의적절하면서도 효과적인 대응이 가능하기 때문에, 관객의 몰입과 만족을 보다 증대시킬 수 있을 것으로 기대된다.

인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법 (An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network)

  • 박진웅;문지훈;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.527-536
    • /
    • 2017
  • 최근 스마트 그리드 산업의 발달과 더불어 효과적인 에너지 관리 시스템의 필요성이 커지고 있다. 특히, 전기 부하 및 에너지 요금 감소를 위해서는 정확한 전력수요 예측과 그에 따른 효과적인 스마트 그리드 운영 전략이 필요하다. 본 논문에서는 보다 정확한 전력수요 예측을 위하여, 수요 시한 기준으로 수집된 전력 사용 데이터를 고시간 해상도로 분할하고, 이에 적합한 인공 신경망 기반의 전력수요 예측 모델을 구축하고자 한다. 예측 모델의 정확도를 향상시키기 위하여 우선, 수열 형태의 시계열 데이터가 가지는 주기성을 제대로 반영하지 못하는 기계 학습 모델의 문제점을 해결하고자, 시계열 데이터를 2차원 공간의 연속적인 데이터로 변환한다. 더욱이, 고시간 해상도에 따른 온도나 습도 등 외부 요인들의 보다 정확한 반영을 위해 이들에 대해서도 선형 보간법을 사용하여 세분화된 시점에서의 값을 추정하여 반영한다. 마지막으로, 구성된 특성 벡터에 대해 주성분 분석 수행을 통하여 불필요한 외부 요인을 제거한다. 예측 모델의 성능을 평가하기 위해서 5겹 교차 검증을 수행하였다. 실험 결과 모든 고시간 해상도에서 성능 향상을 보였으며, 특히 3분 해상도의 경우 3.71%의 가장 낮은 오차율을 보였다.

사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로 (Schematic Cost Estimation Method using Case-Based Reasoning: Focusing on Determining Attribute Weight)

  • 박문서;성기훈;이현수;지세현;김수영
    • 한국건설관리학회논문집
    • /
    • 제11권4호
    • /
    • pp.22-31
    • /
    • 2010
  • 프로젝트 초기단계에서 산정된 공사비는 발주자의 중요한 의사결정에 영향을 미치므로 그 중요성이 강조되고 있지만, 정보의 부족으로 인하여 주로 견적전문가의 경험과 지식에 의존하여 진행된다. 이것은 현재 문제와 가장 유사한 과거 사례를 선택하여 사용하는 사례기반추론으로 발전되었다. 사례기반추론 모델의 예측 성능은 속성 가중치의 산정 결과에 많은 영향을 받으므로, 정확한 속성 가중치의 산정이 요구된다. 기존의 연구는 수학적 방법 또는 전문가의 주관적 판단을 이용하는 방법을 사용한다. 본 연구는 기존 연구의 문제점을 보완하기 위해 유전자 알고리즘을 이용한 사례기반추론 공사비 예측 모델을 제안한다. 공사비 예측 모델은 최근이웃 조회 방법의 과정에 의해 추출한 사례의 공사비 정보를 이용하여 예측 대상의 공사비를 산정한다. 검증 결과 AACE에서 정의한 견적시기별 예측 정확도와 표준화 회귀계수 동일가중치를 사용한 방법보다 높은 오차율을 나타내었다. 따라서 본 연구는 유전자 알고리즘을 도입하여 예측 성능을 향상시키고, 사례기반추론 방법을 사용하여 사용자가 이해하기 용이한 해결책 도출과정을 제시하였다는데 그 의미가 있다.

한국어 음성인식 플랫폼 (ECHOS) 개발 (Development of a Korean Speech Recognition Platform (ECHOS))

  • 권오욱;권석봉;장규철;윤성락;김용래;장광동;김회린;유창동;김봉완;이용주
    • 한국음향학회지
    • /
    • 제24권8호
    • /
    • pp.498-504
    • /
    • 2005
  • 교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.

CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템 (CNN-LSTM-based Upper Extremity Rehabilitation Exercise Real-time Monitoring System)

  • 김재정;김정현;이솔;서지윤;정도운
    • 융합신호처리학회논문지
    • /
    • 제24권3호
    • /
    • pp.134-139
    • /
    • 2023
  • 재활환자는 수술 치료 후 신속한 사회복귀를 목적으로 신체적 기능 회복을 위하여 통원치료 및 일상에서 재활운동을 수행한다. 병원에서 전문 치료사의 도움으로 운동을 수행하는 것과 달리 일상에서 환자 스스로 재활운동을 수행하는 것은 많은 어려움이 있다. 본 논문에서는 일상에서 환자 스스로 효율적이고 올바른 자세로 재활운동을 수행할 수 있도록 CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템을 제안한다. 제안한 시스템은 EMG, IMU가 탑재된 어깨 착용형 하드웨어를 통해 생체신호를 계측하고 학습을 위한 전처리 과정과 정규화를 진행하여 학습 데이터세트로 사용하였다. 구현된 모델은 특징 검출을 위한 3개 합성곱 레이어 3개의 폴링 레이어, 분류를 위한 2개의 LSTM 레이어로 구성되어 있으며 검증 데이터에 대한 학습 결과 97.44%를 확인할 수 있었다. 이후 Teachable machine과의 비교평가를 진행하였으며 비교평가 결과 구현된 모델은 93.6%, Teachable machine은 94.4%로 두 모델이 유사한 분류 성능을 나타내는 것을 확인하였다.

기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발 (Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images)

  • 임구;김도형;김동현;박근홍
    • 한국지구과학회지
    • /
    • 제45권2호
    • /
    • pp.111-120
    • /
    • 2024
  • 운량은 천체 관측을 지속하는 데에 중요한 요소 중 하나이다. 과거에는 관측자가 날씨를 직접 판단할 수밖에 없었으나, 원격 및 자동 관측 시스템의 개발로 관측자의 역할이 상대적으로 줄어들었다. 또한 구름의 다양한 형태와 빠른 이동 때문에 자동으로 운량을 판단하는 것은 쉽지 않다. 이 연구에서는 기계학습 기반의 파이썬 모듈인 "cloudynight"을 밀양아리랑우주천문대의 전천 영상에 적용하여 운량을 모니터링하는 프로그램을 개발하였다. 전천 영상을 하위 영역으로 나누어 각 39,996개 영역의 16개의 특징을 학습하여 기계학습 모델을 생성하였다. 검증 표본에서 얻은 F1 점수는 0.97로, 기계학습 모델이 우수한 성능을 가짐을 보여준다. 운량("Cloudiness")은 전체 하위 영역 개수 중 구름으로 식별 된 하위 영역 개수의 비율로 계산하며, 운량이 지난 30분 동안 0.6을 초과할 때 관측을 중단하도록 자동 관측 프로그램 규칙을 정하였다. 이 규칙을 따를 때, 기계학습 모델이 운량을 오판하여 관측에 영향을 미치는 경우는 거의 발생하지 않았다. 본 기계학습 모델을 통하여, 밀양아리랑우주천문대 0.7 m 망원경의 성공적인 자동 관측을 기대한다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

센서드리프트 판별을 위한 통계적 탐지기술 고찰 (Statistical Techniques to Detect Sensor Drifts)

  • 서인용;신호철;박문규;김성준
    • 한국시뮬레이션학회논문지
    • /
    • 제18권3호
    • /
    • pp.103-112
    • /
    • 2009
  • 원자력발전소에서 센서의 주기적 교정은 안전운전을 위해 꼭 필요하다. 그러나 실제 드리프트가 발생하여 교정을 요하는 센서는 약 2% 미만이다. 또한, 센서의 작동 상태를 매 핵연료 주기마다 수행하는 것은 고장 혹은 드리프트가 발생한 센서를 최대 18개월까지 감지하지 못한 채 운전할 위험이 있다. 원전의 안전운전 및 불필요한 교정을 줄이기 위해 센서의 상시 교정 감시가 필요하다. 이를 위해 주성분 분석과 Support Vector Regression(SVR)을 이용한 PCSVR 알고리즘을 개발하였고, 고리원전 3호기의 출력증발 데이터를 이용하여 검증하였다. 주성분분석은 선형변환을 통한 입력공간의 축소 및 노이즈 제거 효과를 나타내며, AASVR은 해석학적 및 기계학적 모델로 모델링하기 힘든 복잡계를 쉽게 나타낼 수 있는 장점이 있다. SVR의 세가지 파라미터는 반응표면분석법에 의해 최적화하였다. 센서의 고장탐지를 위해 모델 출력의 잔차를 슈하르트 관리도, EWMA, CUSUM 및 일반화우도비검정(GLRT)을 통해 그 결과를 비교하였다. 미세한 드리프트에 대해 CUSUM과 GLRT가 우수한 결과를 보였다. 개발된 알고리즘은 수출형 원전 APR1000 설계시 적용가능 할 것으로 판단된다.