본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.
남중국해는 심해 분지, 대륙 붕단, 얕은 대륙붕, 많은 해협, 복잡한 수심 특징을 가진 전형적인 연안 영해이다. 본 연구에서는, 비구조 격자 기반으로 대상 해역을 상세하게 해상할 수 있으며, 개방경계에 조석을, 해표면에 기상자료를 입력하여 조석 및 폭풍해일을 모의할 수 있는 수치 모델을 구축하여 남중국해의 조석 특성과 전파 양상을 조사하고, 태풍에 의한 폭풍해일을 재현하였다. 태풍에 의한 폭풍해일 모의는, 2013년에 필리핀에 막대한 피해를 초래하였던 태풍 하이옌에 대해서 수행하였다. 관측치 및 선행 연구의 조석 분포와의 비교 결과, 4개의 주요 분조의 진폭과 위상은 대체적으로 잘 모의되었다. 선행 연구들에 따르면, 당 해역은 모델을 이용하여 조석을 예측하기가 어렵다고 보고되고 있는데, 이 점을 감안한다면 본 연구에서 예측한 조석은 허용 범위에 있다고 생각된다. 본 연구에서 수행한 자유 진동 모드 실험을 통해서 남중국해가 일주조 조석이 우세한 이유를 알 수 있었으며, 조석 잔차류(tidal residual current) 및 총에너지 소실(total energy dissipation) 산정을 통해서 조석 및 퇴적환경을 파악하였다. 본 연구에서 구축한 모델을 이용하여 태풍 하이옌에 의한 폭풍해일을 타당하게 모의하였으며, 모델 검증 및 조석 환경 규명을 통하여 남중국해의 지역 실시간 순압 조석/수위 예측 시스템을 구축하였다.
최근 기존 전시 공간 내에 유비쿼터스 환경이 구축되면서, 관객과의 상호작용을 통해 전시 효과를 배가할 수 있는 인터랙티브 전시에 많은 사람들의 관심이 집중되고 있다. 이러한 인터랙티브 전시가 보다 고도화되기 위해서는 전시물에 대한 다양한 관객 반응을 측정하고, 이를 통해 대상 관객이 어떤 감정을 느끼는지 예측할 수 있는 적절한 의사결정지원 모형이 요구된다. 이러한 배경에서 본 연구는 인터랙티브 전시 공간 내에서 수집 가능한 다양한 관객 반응 중 얼굴표정의 변화를 이용하여, 관객의 감정을 추론, 판단하는 지능형 모형을 제시한다. 본 연구에서 제시하는 모형은 무자극 상태의 관객의 표정과 자극이 주어졌을 때 관객의 표정이 어떻게 변화하는지 변화량을 측정하여, 이를 기반으로 인공신경망 기법을 이용해 해당 관객의 감정을 판단하는 모형이다. 이 때, 제안모형의 감정 분류체계로는 간결하면서도 실무에 적용이 용이하여 그간 기존 문헌에서 널리 활용되어 온 매력-각성(Valence-Arousal) 모형을 사용한다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 2011 서울 DMC 컬쳐 오픈 행사에 참여하여, 일반인을 대상으로 얼굴 표정 변화 데이터를 수집하고, 이들이 느끼는 감정 상태를 설문조사하였다. 그리고 나서, 이 자료들을 대상으로 본 연구에서 제안하는 모형을 적용해 보고, 제안모형이 비교모형으로 설정된 통계기반 예측모형에 비해 더 우수한 성과를 보이는지 확인해 보았다. 실험 결과, 본 연구에서 제시하는 모형이 비교 모형인 중회귀분석 모형보다 더 우수한 결과를 제공함을 확인할 수 있었다. 본 연구를 통하여 구축된 관객 감정 판단 모형을 실제 전시장에서 활용한다면 전시물을 관람하는 관객의 반응에 따라 시의적절하면서도 효과적인 대응이 가능하기 때문에, 관객의 몰입과 만족을 보다 증대시킬 수 있을 것으로 기대된다.
최근 스마트 그리드 산업의 발달과 더불어 효과적인 에너지 관리 시스템의 필요성이 커지고 있다. 특히, 전기 부하 및 에너지 요금 감소를 위해서는 정확한 전력수요 예측과 그에 따른 효과적인 스마트 그리드 운영 전략이 필요하다. 본 논문에서는 보다 정확한 전력수요 예측을 위하여, 수요 시한 기준으로 수집된 전력 사용 데이터를 고시간 해상도로 분할하고, 이에 적합한 인공 신경망 기반의 전력수요 예측 모델을 구축하고자 한다. 예측 모델의 정확도를 향상시키기 위하여 우선, 수열 형태의 시계열 데이터가 가지는 주기성을 제대로 반영하지 못하는 기계 학습 모델의 문제점을 해결하고자, 시계열 데이터를 2차원 공간의 연속적인 데이터로 변환한다. 더욱이, 고시간 해상도에 따른 온도나 습도 등 외부 요인들의 보다 정확한 반영을 위해 이들에 대해서도 선형 보간법을 사용하여 세분화된 시점에서의 값을 추정하여 반영한다. 마지막으로, 구성된 특성 벡터에 대해 주성분 분석 수행을 통하여 불필요한 외부 요인을 제거한다. 예측 모델의 성능을 평가하기 위해서 5겹 교차 검증을 수행하였다. 실험 결과 모든 고시간 해상도에서 성능 향상을 보였으며, 특히 3분 해상도의 경우 3.71%의 가장 낮은 오차율을 보였다.
프로젝트 초기단계에서 산정된 공사비는 발주자의 중요한 의사결정에 영향을 미치므로 그 중요성이 강조되고 있지만, 정보의 부족으로 인하여 주로 견적전문가의 경험과 지식에 의존하여 진행된다. 이것은 현재 문제와 가장 유사한 과거 사례를 선택하여 사용하는 사례기반추론으로 발전되었다. 사례기반추론 모델의 예측 성능은 속성 가중치의 산정 결과에 많은 영향을 받으므로, 정확한 속성 가중치의 산정이 요구된다. 기존의 연구는 수학적 방법 또는 전문가의 주관적 판단을 이용하는 방법을 사용한다. 본 연구는 기존 연구의 문제점을 보완하기 위해 유전자 알고리즘을 이용한 사례기반추론 공사비 예측 모델을 제안한다. 공사비 예측 모델은 최근이웃 조회 방법의 과정에 의해 추출한 사례의 공사비 정보를 이용하여 예측 대상의 공사비를 산정한다. 검증 결과 AACE에서 정의한 견적시기별 예측 정확도와 표준화 회귀계수 동일가중치를 사용한 방법보다 높은 오차율을 나타내었다. 따라서 본 연구는 유전자 알고리즘을 도입하여 예측 성능을 향상시키고, 사례기반추론 방법을 사용하여 사용자가 이해하기 용이한 해결책 도출과정을 제시하였다는데 그 의미가 있다.
교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.
재활환자는 수술 치료 후 신속한 사회복귀를 목적으로 신체적 기능 회복을 위하여 통원치료 및 일상에서 재활운동을 수행한다. 병원에서 전문 치료사의 도움으로 운동을 수행하는 것과 달리 일상에서 환자 스스로 재활운동을 수행하는 것은 많은 어려움이 있다. 본 논문에서는 일상에서 환자 스스로 효율적이고 올바른 자세로 재활운동을 수행할 수 있도록 CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템을 제안한다. 제안한 시스템은 EMG, IMU가 탑재된 어깨 착용형 하드웨어를 통해 생체신호를 계측하고 학습을 위한 전처리 과정과 정규화를 진행하여 학습 데이터세트로 사용하였다. 구현된 모델은 특징 검출을 위한 3개 합성곱 레이어 3개의 폴링 레이어, 분류를 위한 2개의 LSTM 레이어로 구성되어 있으며 검증 데이터에 대한 학습 결과 97.44%를 확인할 수 있었다. 이후 Teachable machine과의 비교평가를 진행하였으며 비교평가 결과 구현된 모델은 93.6%, Teachable machine은 94.4%로 두 모델이 유사한 분류 성능을 나타내는 것을 확인하였다.
운량은 천체 관측을 지속하는 데에 중요한 요소 중 하나이다. 과거에는 관측자가 날씨를 직접 판단할 수밖에 없었으나, 원격 및 자동 관측 시스템의 개발로 관측자의 역할이 상대적으로 줄어들었다. 또한 구름의 다양한 형태와 빠른 이동 때문에 자동으로 운량을 판단하는 것은 쉽지 않다. 이 연구에서는 기계학습 기반의 파이썬 모듈인 "cloudynight"을 밀양아리랑우주천문대의 전천 영상에 적용하여 운량을 모니터링하는 프로그램을 개발하였다. 전천 영상을 하위 영역으로 나누어 각 39,996개 영역의 16개의 특징을 학습하여 기계학습 모델을 생성하였다. 검증 표본에서 얻은 F1 점수는 0.97로, 기계학습 모델이 우수한 성능을 가짐을 보여준다. 운량("Cloudiness")은 전체 하위 영역 개수 중 구름으로 식별 된 하위 영역 개수의 비율로 계산하며, 운량이 지난 30분 동안 0.6을 초과할 때 관측을 중단하도록 자동 관측 프로그램 규칙을 정하였다. 이 규칙을 따를 때, 기계학습 모델이 운량을 오판하여 관측에 영향을 미치는 경우는 거의 발생하지 않았다. 본 기계학습 모델을 통하여, 밀양아리랑우주천문대 0.7 m 망원경의 성공적인 자동 관측을 기대한다.
기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.
원자력발전소에서 센서의 주기적 교정은 안전운전을 위해 꼭 필요하다. 그러나 실제 드리프트가 발생하여 교정을 요하는 센서는 약 2% 미만이다. 또한, 센서의 작동 상태를 매 핵연료 주기마다 수행하는 것은 고장 혹은 드리프트가 발생한 센서를 최대 18개월까지 감지하지 못한 채 운전할 위험이 있다. 원전의 안전운전 및 불필요한 교정을 줄이기 위해 센서의 상시 교정 감시가 필요하다. 이를 위해 주성분 분석과 Support Vector Regression(SVR)을 이용한 PCSVR 알고리즘을 개발하였고, 고리원전 3호기의 출력증발 데이터를 이용하여 검증하였다. 주성분분석은 선형변환을 통한 입력공간의 축소 및 노이즈 제거 효과를 나타내며, AASVR은 해석학적 및 기계학적 모델로 모델링하기 힘든 복잡계를 쉽게 나타낼 수 있는 장점이 있다. SVR의 세가지 파라미터는 반응표면분석법에 의해 최적화하였다. 센서의 고장탐지를 위해 모델 출력의 잔차를 슈하르트 관리도, EWMA, CUSUM 및 일반화우도비검정(GLRT)을 통해 그 결과를 비교하였다. 미세한 드리프트에 대해 CUSUM과 GLRT가 우수한 결과를 보였다. 개발된 알고리즘은 수출형 원전 APR1000 설계시 적용가능 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.