• Title/Summary/Keyword: feature localization

Search Result 204, Processing Time 0.024 seconds

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Spatial Speaker Localization for a Humanoid Robot Using TDOA-based Feature Matrix (도착시간지연 특성행렬을 이용한 휴머노이드 로봇의 공간 화자 위치측정)

  • Kim, Jin-Sung;Kim, Ui-Hyun;Kim, Do-Ik;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 2008
  • Nowadays, research on human-robot interaction has been getting increasing attention. In the research field of human-robot interaction, speech signal processing in particular is the source of much interest. In this paper, we report a speaker localization system with six microphones for a humanoid robot called MAHRU from KIST and propose a time delay of arrival (TDOA)-based feature matrix with its algorithm based on the minimum sum of absolute errors (MSAE) for sound source localization. The TDOA-based feature matrix is defined as a simple database matrix calculated from pairs of microphones installed on a humanoid robot. The proposed method, using the TDOA-based feature matrix and its algorithm based on MSAE, effortlessly localizes a sound source without any requirement for calculating approximate nonlinear equations. To verify the solid performance of our speaker localization system for a humanoid robot, we present various experimental results for the speech sources at all directions within 5 m distance and the height divided into three parts.

  • PDF

Extraction and Matching of Elevation Moment of Inertia for Elevation Map-based Localization of an Outdoor Mobile Robot (실외 이동로봇의 고도지도 기반 위치인식을 위한 고도관성모멘트 추출 및 정합)

  • Kwon, Tae-Bum;Song, Jae-Bok;Kang, Sin-Cheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.203-210
    • /
    • 2009
  • The problem of outdoor localization can be practically solved by GPS. However, GPS is not perfect and some areas of outdoor navigation should consider other solutions. This research deals with outdoor localization using an elevation map without GPS. This paper proposes a novel feature, elevation moment of inertia (EMOI), which represents the distribution of elevation as a function of distance from a robot in the elevation map. Each cell of an elevation map has its own EMOI, and outdoor localization can be performed by matching EMOIs obtained from the robot and the pre-given elevation map. The experiments and simulations show that the proposed EMOI can be usefully exploited for outdoor localization with an elevation map and this feature can be easily applied to other probabilistic approaches such as Markov localization method.

Robust Global Localization based on Environment map through Sensor Fusion (센서 융합을 통한 환경지도 기반의 강인한 전역 위치추정)

  • Jung, Min-Kuk;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.96-103
    • /
    • 2014
  • Global localization is one of the essential issues for mobile robot navigation. In this study, an indoor global localization method is proposed which uses a Kinect sensor and a monocular upward-looking camera. The proposed method generates an environment map which consists of a grid map, a ceiling feature map from the upward-looking camera, and a spatial feature map obtained from the Kinect sensor. The method selects robot pose candidates using the spatial feature map and updates sample poses by particle filter based on the grid map. Localization success is determined by calculating the matching error from the ceiling feature map. In various experiments, the proposed method achieved a position accuracy of 0.12m and a position update speed of 10.4s, which is robust enough for real-world applications.

An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform (자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘)

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF

Self-Localization of Mobile Robot Using Single Camera (단일 카메라를 이용한 이동로봇의 자기 위치 추정)

  • 김명호;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.404-404
    • /
    • 2000
  • This paper presents a single vision-based sel(-localization method in an corridor environment. We use the Hough transform for finding parallel lines and vertical lines. And we use these cross points as feature points and it is calculated relative distance from mobile robot to these points. For matching environment map to feature points, searching window is defined and self-localization is performed by matching procedure. The result shows the suitability of this method by experiment.

  • PDF

Autonomous Ground Vehicle Localization Filter Design Using Landmarks with Non-Unique Features (비고유 특징을 갖는 의미정보를 이용한 지상 자율이동체 측위 기법)

  • Kim, Chan-Yeong;Hong, Daniel;Ra, Won-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1486-1495
    • /
    • 2018
  • This paper investigates the autonomous ground vehicle (AGV) localization filter design problem under GNSS-denied environments. It is assumed that the given landmarks do not have unique features due to the lack of a prior knowledge on them. For such case, the AGV may have difficulties in distinguishing the position measurement of the detected landmark from those of other landmarks with the same feature, hence the conventional localization filters are not applicable. To resolve this technical issue, the localization filter design problem is formulated as a special form of the data association determining whether the detected feature is actually originated from which landmark. The measurement hypotheses generated by landmarks with the same feature are evaluated by the nearest neighbor data association scheme to reduce the computational burden. The position measurement corresponding to the landmark with the most probable hypothesis is used for localization filter. Through the experiments in real-driving condition, it is shown that the proposed method provides satisfactory localization performance in spite of using non-unique landmarks.

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF