DOI QR코드

DOI QR Code

Robust Global Localization based on Environment map through Sensor Fusion

센서 융합을 통한 환경지도 기반의 강인한 전역 위치추정

  • Received : 2013.12.04
  • Accepted : 2014.04.08
  • Published : 2014.05.28

Abstract

Global localization is one of the essential issues for mobile robot navigation. In this study, an indoor global localization method is proposed which uses a Kinect sensor and a monocular upward-looking camera. The proposed method generates an environment map which consists of a grid map, a ceiling feature map from the upward-looking camera, and a spatial feature map obtained from the Kinect sensor. The method selects robot pose candidates using the spatial feature map and updates sample poses by particle filter based on the grid map. Localization success is determined by calculating the matching error from the ceiling feature map. In various experiments, the proposed method achieved a position accuracy of 0.12m and a position update speed of 10.4s, which is robust enough for real-world applications.

Keywords

References

  1. R. Siegwart, and I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots," MIT Press, Cambridge, 2004.
  2. D. Fox, W. Bugard, and S. Thrun, "Active Markov Localization for Mobile Robots," Robotics and Autonomous Systems, vol. 25, pp. 195-207, 1998. https://doi.org/10.1016/S0921-8890(98)00049-9
  3. S. Y. Hwang, and J. B. Song, "Clustering and probabilistic matching of arbitrarily shaped ceiling features for monocular vision-based SLAM," Advanced Robotics, vol. 27, no. 10, pp. 739-747, 2013. https://doi.org/10.1080/01691864.2013.785377
  4. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges," Proc. of the 16th Int. Joint Conf. on Artificial Intelligence, 2003.
  5. D. Xu, L. Han, M. Tan, and Y. F. Li, "Ceiling-Based Visual Positioning for an Indoor Mobile Robot With Monocular Vision," IEEE Trans. on Industrial Electronics, vol. 56, no. 5, pp. 1617-1628, 2009. https://doi.org/10.1109/TIE.2009.2012457
  6. S. Y. Hwang, and J. B. Song, "Monocular Vision-based Global Localization Using Position and Orientation of Ceiling Features," Proc. of the IEEE Int. Conf. on Robotics and Automation, 2013.
  7. D. G. Lowe, "Distinctive image features from scaleinvariant keypoints," Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  8. R. Rusinkiewicz and M. Levoy, "Efficient Variants of the ICP Algorithm," Int. Conf. on 3D Digital Imaging and Modeling, pp. 145-153, 2001.
  9. S. Se, D. G. Lowe, and J. J. Little, "Vision-based global localization and mapping for mobile robots," IEEE Trans. on Robotics, vol. 21, no. 3, pp. 364-375, 2005. https://doi.org/10.1109/TRO.2004.839228
  10. M. Ocana, L.M. Bergasa, M.A. Sotelo, R. Flores, D.F. Llorca, D. Schleicher, "Automatic training method applied to a WiFi + ultrasound POMDP navigation system," Robotica, pp.1049-1061, 2009.
  11. A. Elfes, "Using Occupancy grids for mobile robot perception and navigation," IEEE Journal of Computer, vol. 22, pp. 46-57, 1989.
  12. S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, The MIT Press, Cambridge, 2005.
  13. C. Nam, J. Kang, N. L. Doh, "A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments," Journal of Korea Robotics Society, vol. 7, no. 1, pp. 29-34, 2012. https://doi.org/10.7746/jkros.2012.7.1.029
  14. S. Kim, J. Lee, "EKF based Mobile Robot Indoor Localization using Pattern Matching," Journal of Korea Robotics Society, vol. 7, no. 1, pp. 45-56, 2012. https://doi.org/10.7746/jkros.2012.7.1.045

Cited by

  1. Localization of a Mobile Robot Using Ceiling Image with Identical Features vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.160
  2. Kinect센서를 이용한 물체 인식 및 자세 추정을 위한 정확도 개선 방법 vol.10, pp.1, 2015, https://doi.org/10.7746/jkros.2015.10.1.016
  3. 공장환경에서 AGV를 위한 인공표식 기반의 포즈그래프 SLAM vol.10, pp.2, 2014, https://doi.org/10.7746/jkros.2015.10.2.112
  4. 이동 로봇의 상대적 위치 추정을 위한 직사각형 기반의 기하학적 방법 vol.11, pp.1, 2014, https://doi.org/10.7746/jkros.2016.11.1.009
  5. 실내 이동 로봇을 위한 자연 표식과 인공 표식을 혼합한 위치 추정 기법 개발 vol.11, pp.4, 2014, https://doi.org/10.7746/jkros.2016.11.4.205